Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 416186, 8 pages
http://dx.doi.org/10.1155/2013/416186
Research Article

Fast Texture Synthesis in Adaptive Wavelet Packet Trees

1Department of Business Administration, Chung Hua University, Hsinchu City 30012, Taiwan
2Department of Computer Science and Information Engineering, National United University, Miaoli 36003, Taiwan
3Department of Electronics Engineering, Chung Hua University, Hsinchu City 30012, Taiwan
4Department of Mathematics, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano, Italy

Received 21 January 2013; Accepted 18 February 2013

Academic Editor: Shengyong Chen

Copyright © 2013 Ying-Shen Juang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S.-P. Du, S.-M. Hu, and R. R. Martin, “Semi-regular solid texturing from 2D image exemplars,” IEEE Transactions on Visualization and Computer Graphics, vol. 19, no. 3, pp. 460–469, 2012. View at Publisher · View at Google Scholar
  2. M. Petrou, M. H. Jaward, S. Chen, and M. Briers, “Super-resolution in practice: the complete pipeline from image capture to super-resolved subimage creation using a novel frame selection method,” Machine Vision and Applications, vol. 23, no. 3, pp. 441–459, 2011. View at Publisher · View at Google Scholar
  3. J. Zhang, S. Y. Chen, S. Liu, and Q. Guan, “Normalized weighted shape context and its application in feature-based matching,” Optical Engineering, vol. 47, no. 9, Article ID 097201, 2008. View at Publisher · View at Google Scholar
  4. M. A. Akhloufi, X. Maldague, and W. B. Larbi, “A new color-texture approach for industrial products inspection,” Journal of Multimedia, vol. 3, no. 3, pp. 44–51, 2008. View at Google Scholar
  5. S. Lefebvre and H. Hoppe, “Appearance-space texture synthesis,” in Proceedings of the ACM Special Interest Group on Graphics and Interactive Techniques (SIGGRAPH '06), pp. 541–548, Boston, Mass, USA, August 2006. View at Publisher · View at Google Scholar
  6. L. Ritter, W. Li, B. Curless, M. Agrawala, and D. Salesin, “Painting with texture,” in Proceedings of the 17th Eurographics Symposium on Rendering, pp. 371–376, Nicosa, Cyprus, 2006.
  7. V. Kwatra, D. Adalsteinsson, T. Kim, N. Kwatra, M. Carlson, and M. C. Lin, “Texturing fluids,” IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 5, pp. 939–952, 2007. View at Publisher · View at Google Scholar
  8. L. Y. Wei, S. Lefebvre, V. Kwatra, and G. Turk, “State of the art in example-based texture synthesis,” in Proceedings of the Eurographics State of the Art Reports (STARs), Eurographics, March 2009.
  9. N. Pietroni, P. Cignoni, M. Otaduy, and R. Scopigno, “Solid-texture synthesis: a survey,” IEEE Computer Graphics and Applications, vol. 30, no. 4, pp. 74–89, 2010. View at Publisher · View at Google Scholar
  10. Y. Xu, B. Guo, and H. Y. Shum, “Chaos mosaic: fast and memory efficient texture synthesis,” Tech. Rep. MSR-TR-2000-32, Microsoft Research, 2000. View at Google Scholar
  11. A. A. Efros and W. T. Freeman, “Image quilting for texture synthesis and transfer,” in Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '01), pp. 341–346, August 2001. View at Publisher · View at Google Scholar
  12. M. F. Cohen, J. Shade, S. Hiller, and O. Deussen, “Wang tiles for image and texture generation,” in Proceedings of the Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '03), pp. 287–294, San Diego, Calif, USA, July 2003. View at Publisher · View at Google Scholar
  13. G. Cheng and J. Dong, “Seamless montage of natural texture,” in 3rd International Conference on Advanced Computer Control (ICACC '11), pp. 48–51, Harbin, China, 2011.
  14. S. Y. Chen, H. Tong, and C. Cattani, “Markov models for image labeling,” Mathematical Problems in Engineering, vol. 2012, Article ID 814356, 18 pages, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  15. Q. Guan, B. Du, Z. Teng, J. Gillard, and S. Chen, “Bayes clustering and structural support vector machines for segmentation of carotid artery plaques in multi-contrast MRI,” Computational and Mathematical Methods in Medicine, vol. 2012, Article ID 549102, 6 pages, 2012. View at Publisher · View at Google Scholar
  16. A. A. Efros and T. K. Leung, “Texture synthesis by non-parametric sampling,” in Proceedings of the 7th IEEE International Conference on Computer Vision, (ICCV '99), vol. 2, pp. 1033–1038, Kerkyra, Greece. View at Publisher · View at Google Scholar
  17. L. Y. Wei and M. Levoy, “Order independent texture synthesis,” Tech. Rep. TR-2002-01, Stanford Computer Science, 2002. View at Google Scholar
  18. L. Liang, C. Liu, Y. Xu, B. Guo, and H. Y. Shum, “Real-time texture synthesis using patch-based sampling,” ACM Transactions on Graphics, vol. 20, no. 3, pp. 127–150, 2001. View at Publisher · View at Google Scholar
  19. V. Kwatra, I. Essa, A. Bobick, and N. Kwatra, “Texture optimization for example-based synthesis,” in Proceedings of the ACM Special Interest Group on Graphics and Interactive Techniques (SIGGRAPH '05), pp. 795–802, Los Angeles, Calif, USA, August 2005. View at Publisher · View at Google Scholar
  20. J. Han, K. Zhou, L. Y. Wei et al., “Fast example-based surface texture synthesis via discrete optimization,” Visual Computer, vol. 22, no. 9–11, pp. 918–925, 2006. View at Publisher · View at Google Scholar
  21. F. Dong and X. Ye, “Multiscaled texture synthesis using multisized pixel neighborhoods,” IEEE Computer Graphics and Applications, vol. 27, no. 3, pp. 41–47, 2007. View at Publisher · View at Google Scholar
  22. C.-W. Fang and J.-J. J. Lien, “Rapid image completion system using multiresolution patch-based directional and nondirectional approaches,” IEEE Transactions on Image Processing, vol. 18, no. 12, pp. 2769–2779, 2009. View at Publisher · View at Google Scholar · View at MathSciNet
  23. P. J. Burt and E. H. Adelson, “The Laplacian pyramid as a compact image code,” IEEE Transactions on Communications, vol. 31, no. 4, pp. 532–540, 1983. View at Publisher · View at Google Scholar
  24. J. S. De Bonet, “Multiresolution sampling procedure for analysis and synthesis of texture images,” in Proceedings of the ACM Special Interest Group on Graphics and Interactive Techniques (SIGGRAPH '06), pp. 361–368, Los Angeles, Calif, USA, August 1997.
  25. P. J. Burt, “Fast algorithms for estimating local image properties,” Computer Vision, Graphics, & Image Processing, vol. 21, no. 3, pp. 368–382, 1983. View at Publisher · View at Google Scholar
  26. L. Y. Wei and M. Levoy, “Fast texture synthesis using tree-structured vector quantization,” in Proceedings of the ACM Special Interest Group on Graphics and Interactive Techniques (SIGGRAPH '00), pp. 479–488, New Orleans, La, USA, July 2000.
  27. J. C. Goswami and A. K. Chan, Fundamentals of Wavelets: Theory, Algorithms, and Applications, Wiley Series in Microwave and Optical Engineering, John Wiley & Sons, Hoboken, NJ, USA, 2nd edition, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  28. S. C. Lim, C. H. Eab, K. H. Mak, M. Li, and S. Y. Chen, “Solving linear coupled fractional differential equations by direct operational method and some applications,” Mathematical Problems in Engineering, vol. 2012, Article ID 653939, 28 pages, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  29. C. Cattani, “Harmonic wavelet approximation of random, fractal and high frequency signals,” Telecommunication Systems, vol. 43, no. 3-4, pp. 207–217, 2010. View at Publisher · View at Google Scholar
  30. C. Cattani, “Shannon wavelets for the solution of integrodifferential equations,” Mathematical Problems in Engineering, vol. 2010, Article ID 408418, 22 pages, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  31. A. Abbate, C. M. DeCusatis, and P. K. Das, Wavelets and Subbands: Fundamentals and Applications, Applied and Numerical Harmonic Analysis, Springer, Boston, Mass, USA, 2002. View at Publisher · View at Google Scholar · View at MathSciNet
  32. Y. Yu, J. Luo, and C. W. Chen, “Multiresolution block sampling based method for texture synthesis,” in Proceedings of the 16th International Conference on Pattern Recognition, pp. 239–242, 2002. View at Publisher · View at Google Scholar
  33. H. F. Cui, X. Zheng, and T. Ruan, “An efficient texture synthesis algorithm based on WT,” in Proceedings of the 7th International Conference on Machine Learning and Cybernetics (ICMLC '08), pp. 3472–3477, Kunming, China, July 2008. View at Publisher · View at Google Scholar
  34. T. Y. Sung and H. C. Hsin, “An efficient rearrangement of wavelet packet coefficients for embedded image coding based on SPIHT algorithm,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E90-A, no. 9, pp. 2014–2020, 2007. View at Publisher · View at Google Scholar
  35. H. C. Hsin, T.-Y. Sung, Y.-S. Shieh, and C. Cattani, “A new texture synthesis algorithm based on wavelet packet tree,” Mathematical Problems in Engineering, vol. 2012, Article ID 305384, 12 pages, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  36. H. C. Hsin, T. Y. Sung, and L. T. Ko, “A fast Wavelet packet based algorithm for texture synthesis,” in 21st International Conference on Pattern Recognition (ICPR '12), pp. 3124–3127, Proceedings of the Tsukuba, Japan, 2012.
  37. N. M. Rajpoot, R. G. Wilson, F. G. Meyer, and R. R. Coifman, “Adaptive wavelet packet basis selection for zerotree image coding,” IEEE Transactions on Image Processing, vol. 12, no. 12, pp. 1460–1472, 2003. View at Publisher · View at Google Scholar · View at MathSciNet
  38. H. C. Hsin and T. Y. Sung, “Adaptive selection and rearrangement of wavelet packets for quad-tree image coding,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E91-A, no. 9, pp. 2655–2662, 2008. View at Publisher · View at Google Scholar