Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 517372, 22 pages
http://dx.doi.org/10.1155/2013/517372
Research Article

Hazmats Transportation Network Design Model with Emergency Response under Complex Fuzzy Environment

1State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
2Uncertainty Decision-Making Laboratory, Sichuan University, Chengdu 610064, China
3China Three Gorges Corporation, Yichang 443002, China

Received 26 December 2012; Revised 2 February 2013; Accepted 2 February 2013

Academic Editor: Valentina E. Balas

Copyright © 2013 Jiuping Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A bilevel optimization model for a hazardous materials transportation network design is presented which considers an emergency response teams location problem. On the upper level, the authority designs the transportation network to minimize total transportation risk. On the lower level, the carriers first choose their routes so that the total transportation cost is minimized. Then, the emergency response department locates their emergency service units so as to maximize the total weighted arc length covered. In contrast to prior studies, the uncertainty associated with transportation risk has been explicitly considered in the objective function of our mathematical model. Specifically, our research uses a complex fuzzy variable to model transportation risk. An improved artificial bee colony algorithm with priority-based encoding is also applied to search for the optimal solution to the bilevel model. Finally, the efficiency of the proposed model and algorithm is evaluated using a practical case and various computing attributes.