Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 530349, 9 pages
Research Article

Performance Recognition for Sulphur Flotation Process Based on Froth Texture Unit Distribution

School of Information Science and Engineering, Central South University, Changsha, Hunan 410083, China

Received 30 August 2012; Accepted 20 December 2012

Academic Editor: Bin Jiang

Copyright © 2013 Mingfang He et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


As an important indicator of flotation performance, froth texture is believed to be related to operational condition in sulphur flotation process. A novel fault detection method based on froth texture unit distribution (TUD) is proposed to recognize the fault condition of sulphur flotation in real time. The froth texture unit number is calculated based on texture spectrum, and the probability density function (PDF) of froth texture unit number is defined as texture unit distribution, which can describe the actual textual feature more accurately than the grey level dependence matrix approach. As the type of the froth TUD is unknown, a nonparametric kernel estimation method based on the fixed kernel basis is proposed, which can overcome the difficulty when comparing different TUDs under various conditions is impossible using the traditional varying kernel basis. Through transforming nonparametric description into dynamic kernel weight vectors, a principle component analysis (PCA) model is established to reduce the dimensionality of the vectors. Then a threshold criterion determined by the TQ statistic based on the PCA model is proposed to realize the performance recognition. The industrial application results show that the accurate performance recognition of froth flotation can be achieved by using the proposed method.