Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 537934, 7 pages
http://dx.doi.org/10.1155/2013/537934
Research Article

A Parallel Encryption Algorithm Based on Piecewise Linear Chaotic Map

School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China

Received 22 April 2013; Revised 28 July 2013; Accepted 28 July 2013

Academic Editor: Xiaojie Su

Copyright © 2013 Xizhong Wang and Deyun Chen. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Fridrich, “Symmetric ciphers based on two-dimensional chaotic maps,” International Journal of Bifurcation and Chaos, vol. 8, no. 6, pp. 1259–1284, 1998. View at Publisher · View at Google Scholar · View at MathSciNet
  2. M. S. Baptista, “Cryptography with chaos,” Physics Letters A, vol. 240, no. 1-2, pp. 50–54, 1998. View at Publisher · View at Google Scholar · View at MathSciNet
  3. N. K. Pareek, V. Patidar, and K. K. Sud, “Discrete chaotic cryptography using external key,” Physics Letters A, vol. 309, no. 1-2, pp. 75–82, 2003. View at Publisher · View at Google Scholar · View at MathSciNet
  4. Y. Mao, G. Chen, and S. Lian, “A novel fast image encryption scheme based on 3D chaotic baker maps,” International Journal of Bifurcation and Chaos, vol. 14, no. 10, pp. 3613–3624, 2004. View at Publisher · View at Google Scholar · View at MathSciNet
  5. A. Akhshani, S. Behnia, A. Akhavan, H. Abu Hassan, and Z. Hassan, “A novel scheme for image encryption based on 2D piecewise chaotic maps,” Optics Communications, vol. 283, no. 17, pp. 3259–3266, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. C. E. Shannon, “Communication theory of secrecy systems,” The Bell System Technical Journal, vol. 28, pp. 656–715, 1949. View at Google Scholar · View at MathSciNet
  7. G. Álvarez and S. Li, “Some basic cryptographic requirements for chaos-based cryptosystems,” International Journal of Bifurcation and Chaos, vol. 16, no. 8, pp. 2129–2151, 2006. View at Publisher · View at Google Scholar · View at MathSciNet
  8. T.-C. Lin and K.-W. Hsu, “A new adaptive H control for chaos synchronization between two different chaotic systems,” International Journal of Innovative Computing, Information and Control, vol. 8, no. 1, pp. 701–714, 2012. View at Google Scholar · View at Scopus
  9. A. Alfi, “Particle swarm optimization algorithm with dynamic inertia weight for online parameter identification applied to lorenz chaotic system,” International Journal of Innovative Computing, Information and Control, vol. 8, no. 2, pp. 1191–1203, 2012. View at Google Scholar · View at Scopus
  10. H. Reza Koofigar and S. Amelian, “Adaptive nonlinear control of uncertain chaotic gyros subjected to unknown parameters and disturbances,” International Journal of Innovative Computing, Information and Control, vol. 8, no. 9, pp. 6317–6327, 2012. View at Google Scholar
  11. A. Baranovsky and D. Daems, “Design of one-dimensional chaotic maps with prescribed statistical properties,” International Journal of Bifurcation and Chaos, vol. 5, no. 6, pp. 1585–1598, 1995. View at Publisher · View at Google Scholar · View at MathSciNet
  12. H. Zhou and X. Ling, “Problems with the chaotic inverse system encryption approach,” IEEE Transactions on Circuits and Systems I, vol. 44, no. 3, pp. 268–271, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Zhou, X. Ling, and J. Yu, “Secure communication via one-dimensional chaotic inverse systems,” in Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '97), vol. 2, pp. 1029–1032, June 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Sang, R. Wang, and Y. Yan, “Perturbance-based algorithm to expand cycle length of chaotic key stream,” Electronics Letters, vol. 34, no. 9, pp. 873–874, 1998. View at Google Scholar · View at Scopus
  15. T. Habutsu, Y. Nishio, I. Sasase, and S. Mori, “A secret key cryptosystem using a chaotic map,” IEICE Transactions E, vol. 73, pp. 1041–1044, 1990. View at Google Scholar
  16. E. Alvarez, A. Fernández, P. Garcia, J. Jiménez, and A. Marcano, “New approach to chaotic encryption,” Physics Letters A, vol. 263, no. 4–6, pp. 373–375, 1999. View at Google Scholar · View at Scopus
  17. M. Jessa, “Data encryption algorithms using one-dimensional chaotic maps,” in Proceedings of IEEE Internaitonal Symposium on Circuits and Systems, vol. 1, pp. 711–714, May 2000. View at Scopus
  18. S. Papadimitriou, T. Bountis, S. Mavroudi, and A. Bezerianos, “A probabilistic symmetric encryption scheme for very fast secure communication based on chaotic systems of difference equations,” International Journal of Bifurcation and Chaos, vol. 11, no. 12, pp. 3107–3115, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. X. Yi, C. H. Tan, and C. K. Siew, “A new block cipher based on chaotic tent maps,” IEEE Transactions on Circuits and Systems I, vol. 49, no. 12, pp. 1826–1829, 2002. View at Publisher · View at Google Scholar · View at MathSciNet
  20. P. García and J. Jiménez, “Communication through chaotic map systems,” Physics Letters A, vol. 298, no. 1, pp. 35–40, 2002. View at Publisher · View at Google Scholar · View at MathSciNet
  21. N. Masuda and K. Aihara, “Cryptosystems with discretized chaotic maps,” IEEE Transactions on Circuits and Systems I, vol. 49, no. 1, pp. 28–40, 2002. View at Publisher · View at Google Scholar · View at MathSciNet
  22. S. Li, X. Mou, Y. Cai, Z. Ji, and J. Zhang, “On the security of a chaotic encryption scheme: problems with computerized chaos in finite computing precision,” Computer Physics Communications, vol. 153, no. 1, pp. 52–58, 2003. View at Publisher · View at Google Scholar · View at MathSciNet
  23. H. Zhou and X. Ling, “Realizing finite precision chaotic systems via perturbation of m-sequences,” Acta Electronica Sinica, vol. 25, no. 7, pp. 95–97, 1997. View at Google Scholar · View at Scopus
  24. T. Sang, R. Wang, and Y. Yan, “Clock-controlled chaotic keystream generators,” Electronics Letters, vol. 34, no. 20, pp. 1932–1934, 1998. View at Google Scholar · View at Scopus
  25. S. Li, G. Chen, and X. Mou, “On the dynamical degradation of digital piecewise linear chaotic maps,” International Journal of Bifurcation and Chaos, vol. 15, no. 10, pp. 3119–3151, 2005. View at Publisher · View at Google Scholar · View at MathSciNet
  26. G. Amdahl, “Validity of the single processor approach to achieving large-scale computing capabilities,” in Proceedings of the Spring Joint Computer Conference (AFIPS '67), vol. 30, pp. 483–485, 1967.
  27. J. Liu, D. Song, and Y. Xu, “A parallel encryption algorithm for dual-core processor based on chaotic map,” in Proceedings of the 4th International Conference on Machine Vision: Computer Vision and Image Analysis; Pattern Recognition and Basic Technologies (ICMV '11), vol. 8350 of Proceedings of SPIE, 83500B, January 2011. View at Publisher · View at Google Scholar