Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 542061, 7 pages
Research Article

Phase Stability Diagrams for High Temperature Corrosion Processes

1Facultad de Química, Universidad Nacional Autónoma de México, 04510 México City, DF, Mexico
2Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM, Avenida Universidad 1001, Colonia Chamilpa, 62210 Cuernavaca, MOR, Mexico
3Instituto de Investigaciones Eléctricas, Gerencia de Materiales y Procesos Químicos, Avenida Reforma 113, Colonia Palmira, 62490 Cuernavaca, MOR, Mexico
4Instituto Tecnologico de Zacatepec, Departamento de Ingenieria Quimica y Bioquimica, Avenida Instituto Tecnologico 27, 62780 Zacatepec, MOR, Mexico
5Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Fisicas, Avenida Universidad s/n, 62210 Cuernavaca, MOR, Mexico

Received 20 February 2013; Accepted 29 May 2013

Academic Editor: Gianluca Ranzi

Copyright © 2013 J. J. Ramos-Hernandez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Corrosion phenomena of metals by fused salts depend on chemical composition of the melt and environmental conditions of the system. Detail knowledge of chemistry and thermodynamic of aggressive species formed during the corrosion process is essential for a better understanding of materials degradation exposed to high temperature. When there is a lack of kinetic data for the corrosion processes, an alternative to understand the thermodynamic behavior of chemical species is to utilize phase stability diagrams. Nowadays, there are several specialized software programs to calculate phase stability diagrams. These programs are based on thermodynamics of chemical reactions. Using a thermodynamic data base allows the calculation of different types of phase diagrams. However, sometimes it is difficult to have access to such data bases. In this work, an alternative way to calculate phase stability diagrams is presented. The work is exemplified in the Na-V-S-O and Al-Na-V-S-O systems. This system was chosen because vanadium salts is one of the more aggressive system for all engineering alloys, especially in those processes where fossil fuels are used.