Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 564212, 8 pages
http://dx.doi.org/10.1155/2013/564212
Research Article

The Research of Mathematical Method and Position Control of Actuator in Power Switchgear

1Department of Electrical and Electronics Engineering, Dalian University of Technology, Dalian 116024, China
2Department of College of Electromechanical and Information Engineering, Dalian Nationalities University, Dalian 116024, China

Received 3 April 2013; Revised 29 June 2013; Accepted 8 July 2013

Academic Editor: Rongni Yang

Copyright © 2013 Enyuan Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Transient effects such as overvoltage and inrush currents will be caused due to opening and closing the switchgear at random phase. Phase-controlled technology present in recent years, which is restricted by the operation dispersion of actuator, can limit the transient effects. And the dispersion of the switchgear with a permanent magnetic actuator (PMA) is small. Therefore, the research of mathematical method and position control in this paper is based on the PMA. Firstly, the dynamic mathematical method and simulation system established in MATLAB are used to improve the design of the PMA owing same type. Secondly, simulation with the use of improved fuzzy algorithm is carried out. And an optimized self-adaptive fuzzy algorithm is obtained in the simulation process which can be used to trace the given displacement curve. Finally, a large number of tracing experiments have been done on the 35 kV breaker prototype to verify the effectiveness of the algorithm. In the experiments, the closing time of breaker can be stabilized within ±0.5 ms when capacitor voltage and capacitance change. These results prove that the mathematical model and the fuzzy algorithm are effective and practical.