Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 584909, 12 pages
http://dx.doi.org/10.1155/2013/584909
Research Article

Using Objective Clustering for Solving Many-Objective Optimization Problems

School of Computer Science and Technology, Xidian University, Xi'an 710071, China

Received 18 January 2013; Accepted 13 April 2013

Academic Editor: Andy Song

Copyright © 2013 Xiaofang Guo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. A. Coello Coello, G. B. Lamont, and D. A. van Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems, Springer, New York, NY, USA, 2009.
  2. H. Ishibuchi, N. Tsukamoto, and Y. Nojima, “Evolutionary many-objective optimization: a short review,” in Proceedings of IEEE Congress on Evolutionary Computation (CEC '08), pp. 2419–2426, IEEE Service Center, Hong Kong, June 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. P. J. Bentley and J. P. Wakefield, “Finding acceptable solutions in the pareto-optimal range using mult-iobjective genetic algorithms,” in Soft Computing in Engineering Design and Manufacturing,, pp. 231–240, Springer, London, UK, 1997. View at Google Scholar
  4. N. Drechsler, R. Drechsler, and B. Becker, “Multi-objective optimisation based on relation favour,” in Evolutionary Multi-Criterion Optimization (Zurich, 2001), vol. 1993 of Lecture Notes in Computer Science, pp. 154–166, Springer, Berlin, 2001. View at Publisher · View at Google Scholar · View at MathSciNet
  5. F. di Pierro, S. T. Khu, and D. A. Savić, “An investigation on preference order ranking scheme for multiobjective evolutionary optimization,” IEEE Transactions on Evolutionary Computation, vol. 11, no. 1, pp. 17–45, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. X. Zou, Y. Chen, M. Liu, and L. Kang, “A new evolutionary algorithm for solving many-objective optimization problems,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 38, no. 5, pp. 1402–1412, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. E. J. Hughes, “Multiple single objective pareto sampling,” in Congress on Evolutionary Computation, pp. 2678–2684, IEEE Press, December 2003.
  8. E. J. Hughes, “MSOPS-II: a general-purpose many-objective optimiser,” in Proceedings of IEEE Congress on Evolutionary Computation (CEC '07), pp. 3944–3951, Singapore, September 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. H. J. F. Moen and S. Kristoffersen, “Spanning the pareto front of a counter radar detection problem,” in Proceedings of the 13th Annual Genetic and Evolutionary Computation Conference (GECCO '11), pp. 1835–1842, Dublin, Ireland, 2011.
  10. K. Deb and R. Datta, “Hybrid evolutionary multi-objective optimization and analysis of machining operations,” Engineering Optimization, vol. 44, no. 6, pp. 685–706, 2012. View at Publisher · View at Google Scholar · View at MathSciNet
  11. D. Brockhoff and E. Zitzler, “Are all objectives necessary? On dimensionality reduction in evolutionary multiobjective optimization,” in Parallel Problem Solving from Nature, vol. 4193 of Lecture Notes in Computer Science, pp. 533–542, Springer, 2006. View at Google Scholar · View at Scopus
  12. A. López Jaimes, C. A. Coello Coello, and J. E. Urías Barrientos, “Online objective reduction to deal with many-objective problems,” in Evolutionary Multi-Criterion Optimization, vol. 5467 of Lecture Notes in Computer Science, pp. 423–437, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. A. L. Jaimes, C. A. Coello Coello, and D. Chakraborty, “Objective reduction using a feature selection technique,” in Proceedings of the 10th Annual Genetic and Evolutionary Computation Conference (GECCO '08), pp. 673–680, July 2008. View at Scopus
  14. D. Brockhoff and E. Zitzler, “Improving hypervolume-based multiobjective evolutionary algorithms by using objective reduction methods,” in Proceedings of IEEE Congress on Evolutionary Computation (CEC '07), pp. 2086–2093, September 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Brockhoff and E. Zitzler, “Objective reduction in evolutionary multiobjective optimization: theory and applications,” Evolutionary Computation, vol. 17, no. 2, pp. 135–166, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Deb and D. Saxena, “On finding pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems,” Kangal Technique Report, 2005. View at Google Scholar
  17. K. Deb and D. K. Saxena, “Searching for pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems,” in Congress on Evolutionary Computation (CEC '06), pp. 3353–3360, 2006.
  18. D. K. Saxena and K. Deb, “Objective reduction in many-objective optimization: linear and nonlinear algorithm,” Kangal Technique Report, 2010. View at Google Scholar
  19. T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley Series in Telecommunications, John Wiley & Sons, New York, NY, USA, 1991. View at Publisher · View at Google Scholar · View at MathSciNet
  20. W. Li, “Mutual information functions versus correlation functions,” Journal of Statistical Physics, vol. 60, no. 5-6, pp. 823–837, 1990. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  21. L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, John Wiley & Sons, New York, NY, USA, 1990. View at Publisher · View at Google Scholar · View at MathSciNet
  22. R. Ng and J. Han, “Effecient and effictive clustering methods for spatial data mining,” in Proceedings of the 20th International Conference on Very Large Data Bases (VLDB '94), Santiago de Chile, Chile, 1994.
  23. K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multiobjective optimization test problems,” in Proceedings of IEEE Congress on Evolutionary Computation, pp. 825–830, 2002.
  24. K. . Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable test problems for evolutionary multi-objective optimization,” in Evolutionary Multiobjective Optimization: Theoretical Advances and Applications, A. Abraham, R. Jain, and R. Goldberg, Eds., chapter 6, pp. 105–145, Springer, 2005. View at Google Scholar
  25. S. Huband, P. Hingston, L. Barone, and L. While, “A review of multiobjective test problems and a scalable test problem toolkit,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 5, pp. 477–506, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. X. Guo, X. Wang, M. Wang, and Y. Wang, “A new objective reduction algorithm for many-objective problems: employing mutual information and clustering algorithm,” in Proceedings of the 8th International Conference on Computational Intelligence and Security (CIS '12), IEEE Press, 2012.
  27. K. Musselman and J. Talavage, “A tradeoff cut approach to multiple objective optimization,” Operations Research, vol. 28, no. 6, pp. 1424–1435, 1980. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus