Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 595086, 16 pages
http://dx.doi.org/10.1155/2013/595086
Research Article

Geometric Pseudospectral Method on SE(3) for Rigid-Body Dynamics with Application to Aircraft

College of Mechatronic Engineering and Automation, National University of Defense Technology, Changsha, Hunan 410073, China

Received 29 December 2012; Accepted 26 March 2013

Academic Editor: Anders Eriksson

Copyright © 2013 Jie Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

General pseudospectral method is extended to the special Euclidean group SE(3) by virtue of equivariant map for rigid-body dynamics of the aircraft. On SE(3), a complete left invariant rigid-body dynamics model of the aircraft in body-fixed frame is established, including configuration model and velocity model. For the left invariance of the configuration model, equivalent Lie algebra equation corresponding to the configuration equation is derived based on the left-trivialized tangent of local coordinate map, and the top eight orders truncated Magnus series expansion with its coefficients of the solution of the equivalent Lie algebra equation are given. A numerical method called geometric pseudospectral method is developed, which, respectively, computes configurations and velocities at the collocation points and the endpoint based on two different collocation strategies. Through numerical tests on a free-floating rigid-body dynamics compared with several same order classical methods in Euclidean space and Lie group, it is found that the proposed method has higher accuracy, satisfying computational efficiency, stable Lie group structural conservativeness. Finally, how to apply the previous discretization scheme to rigid-body dynamics simulation and control of the aircraft is illustrated.