Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 631074, 5 pages
http://dx.doi.org/10.1155/2013/631074
Research Article

Damage and Failure Process of Concrete Structure under Uniaxial Compression Based on Peridynamics Modeling

Department of Engineering Mechanics, Hohai University, Nanjing 210098, China

Received 19 July 2013; Accepted 18 September 2013

Academic Editor: Zhiqiang Hu

Copyright © 2013 Feng Shen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Peridynamics is a nonlocal formulation of continuum mechanics, which uses integral formulation rather than the spatial partial differential equations. The peridynamic approach avoids using any spatial derivatives, which arise naturally in the classical local theory. It has shown effectiveness and advantage in solving discontinuous problems at both macro- and microscales. In this paper, the peridynamic theory is used to analyze damage and progressive failure of concrete structures. A nonlocal peridynamic model for concrete columns under uniaxial compression is developed. Numerical example illustrates that cracks in a peridynamic body of concrete form spontaneously. The result of the example clarifies the unique advantage of modeling damage accumulation and progressive failure of concrete based on peridynamic theory. This study provides a new promising alternative for analyzing complicated discontinuity problems. Finally, some open problems and future research trends in peridynamics are discussed.