Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 631074, 5 pages
http://dx.doi.org/10.1155/2013/631074
Research Article

Damage and Failure Process of Concrete Structure under Uniaxial Compression Based on Peridynamics Modeling

Department of Engineering Mechanics, Hohai University, Nanjing 210098, China

Received 19 July 2013; Accepted 18 September 2013

Academic Editor: Zhiqiang Hu

Copyright © 2013 Feng Shen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. A. Silling, “Reformulation of elasticity theory for discontinuities and long-range forces,” Journal of the Mechanics and Physics of Solids, vol. 48, no. 1, pp. 175–209, 2000. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  2. S. A. Silling, M. Zimmermann, and R. Abeyaratne, “Deformation of a peridynamic bar,” Journal of Elasticity, vol. 73, no. 1–3, pp. 173–190, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  3. S. A. Silling and F. Bobaru, “Peridynamic modeling of membranes and fibers,” International Journal of Non-Linear Mechanics, vol. 40, no. 2-3, pp. 395–409, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. W. Gerstle, N. Sau, and E. Aguilera, “Peridynamic modeling of plain and reinforced concrete structures,” in Proceedings of the 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT '05), Beijing, China, 2005.
  5. W. Gerstle, N. Sau, and S. Silling, “Peridynamic modeling of concrete structures,” Nuclear Engineering and Design, vol. 237, no. 12-13, pp. 1250–1258, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Kilic and E. Madenci, “Structural stability and failure analysis using peridynamic theory,” International Journal of Non-Linear Mechanics, vol. 44, no. 8, pp. 845–854, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Shen, Q. Zhang, D. Huang, and J. Zhao, “Peridynamics modeling of failure process of concrete structure subjected to impact loading,” Engineering Mechanics, vol. 29, no. s1, pp. 12–15, 2012. View at Google Scholar
  8. F. Shen, Q. Zhang, D. Huang, and J. Zhao, “Damage and failure process of concrete structure under uni-axial tension based on peridynamics modeling,” Chinese Journal of Computational Mechanics, vol. 30, pp. 79–83, 2013. View at Google Scholar
  9. D. Huang, Q. Zhang, and P. Z. Qiao, “Damage and progressive failure of concrete structures using non-local peridynamic modeling,” Science China Technological Sciences, vol. 54, no. 3, pp. 591–596, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Huang, Q. Zhang, P. Qiao, and F. Shen, “A review on peridynamics method and its applications,” Advances in Mechanics, vol. 40, no. 4, pp. 448–459, 2010. View at Google Scholar
  11. M. L. Parks, R. B. Lehoucq, S. J. Plimpton, and S. A. Silling, “Implementing peridynamics within a molecular dynamics code,” Computer Physics Communications, vol. 179, no. 11, pp. 777–783, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. S. A. Silling and E. Askari, “A meshfree method based on the peridynamic model of solid mechanics,” Computers and Structures, vol. 83, no. 17-18, pp. 1526–1535, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. Q. Du and K. Zhou, “Mathematical analysis for the peridynamic nonlocal continuum theory,” ESAIM: Mathematical Modelling and Numerical Analysis, vol. 45, no. 2, pp. 217–234, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  14. B. K. Tuniki, Peridynamic constitutive model of concrete [M.S. thesis], University of New Mexico, 2012.
  15. P. Seleson and M. L. Parks, “On the role of the influence function in the peridynamic theory,” International Journal for Multiscale Computational Engineering, vol. 9, no. 6, pp. 689–706, 2011. View at Publisher · View at Google Scholar · View at Scopus