Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 647569, 10 pages
http://dx.doi.org/10.1155/2013/647569
Research Article

Applying an Extended Fuzzy Parametric Approach to the Problem of Water Allocations

1School of Civil & Environmental Engineering, Nanyang Technological University, Blk N1-01c-82, 50 Nanyang Avenue, Singapore 639798
2Earth Observatory of Singapore (EOS), Nanyang Technological University, Singapore 639798

Received 22 November 2012; Accepted 22 January 2013

Academic Editor: Songlin Nie

Copyright © 2013 T. Y. Xu and X. S. Qin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. H. Huang, “IPWM: an interval parameter water quality management model,” Engineering Optimization, vol. 26, no. 2, pp. 79–103, 1996. View at Google Scholar · View at Scopus
  2. G. H. Huang, “A hybrid inexact-stochastic water management model,” European Journal of Operational Research, vol. 107, no. 1, pp. 137–158, 1998. View at Google Scholar · View at Scopus
  3. B. Abolpour and M. Javan, “Optimization model for allocating water in a river basin during a drought,” Journal of Irrigation and Drainage Engineering—ASCE, vol. 133, no. 6, pp. 559–572, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. H. W. Chen and N. B. Chang, “Using fuzzy operators to address the complexity in decision making of water resources redistribution in two neighboring river basins,” Advances in Water Resources, vol. 33, no. 6, pp. 652–666, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Xu and X. S. Qin, “Agricultural effluent control under uncertainty: an inexact double-sided fuzzy chance-constrained model,” Advances in Water Resources, vol. 33, no. 9, pp. 997–1014, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. R. Nikoo, R. Kerachian, and H. Poorsepahy-Samian, “An interval parameter model for cooperative inter-basin water resources allocation considering the water quality issues,” Water Resources Management, vol. 26, no. 11, pp. 3329–3343, 2012. View at Publisher · View at Google Scholar
  7. C. Baudrit, D. Guyonnet, and D. Dubois, “Postprocessing the hybrid method for addressing uncertainty in risk assessments,” Journal of Environmental Engineering—ASCE, vol. 131, no. 12, pp. 1750–1754, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Inuiguchi and J. Ramík, “Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem,” Fuzzy Sets and Systems, vol. 111, no. 1, pp. 3–28, 2000. View at Google Scholar · View at Scopus
  9. R. Slowinski, “A multicriteria fuzzy linear programming method for water supply system development planning,” Fuzzy Sets and Systems, vol. 19, no. 3, pp. 217–237, 1986. View at Google Scholar · View at Scopus
  10. J. Kindler, “Rationalizing water requirements with aid of fuzzy allocation model,” Journal of Water Resources Planning & Management—ASCE, vol. 118, no. 3, pp. 308–323, 1992. View at Google Scholar · View at Scopus
  11. C. S. Lee and S. P. Chang, “Interactive fuzzy optimization for an economic and environmental balance in a river system,” Water Research, vol. 39, no. 1, pp. 221–231, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. R. M. Faye, S. Sawadogo, and F. Mora-Camino, “Flexible management of water resource systems,” Applied Mathematics and Computation, vol. 167, no. 1, pp. 516–527, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Mula, R. Poler, and J. P. Garcia, “MRP with flexible constraints: a fuzzy mathematical programming approach,” Fuzzy Sets and Systems, vol. 157, no. 1, pp. 74–97, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. R. R. Tan, “Fuzzy optimization model for source-sink water network synthesis with parametric uncertainties,” Industrial and Engineering Chemistry Research, vol. 50, no. 7, pp. 3686–3694, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. B. Julien, “An extension to possibilistic linear programming,” Fuzzy Sets and Systems, vol. 64, no. 2, pp. 195–206, 1994. View at Google Scholar · View at Scopus
  16. H. Tanaka, P. Guo, and H. J. Zimmermann, “Possibility distributions of fuzzy decision variables obtained from possibilistic linear programming problems,” Fuzzy Sets and Systems, vol. 113, no. 2, pp. 323–332, 2000. View at Google Scholar · View at Scopus
  17. C. Riverol, M. V. Pilipovik, and C. Carosi, “Assessing the water requirements in refineries using possibilistic programming,” Chemical Engineering and Processing, vol. 45, no. 7, pp. 533–537, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. C. Xu and I. C. Goulter, “Optimal design of water distribution networks using fuzzy optimization,” Civil Engineering and Environmental Systems, vol. 16, no. 4, pp. 243–266, 1999. View at Google Scholar · View at Scopus
  19. H. Zhu, G. H. Huang, P. Guo, and X. S. Qin, “A fuzzy robust nonlinear programming model for stream water quality management,” Water Resources Management, vol. 23, no. 14, pp. 2913–2940, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. I. Maqsood, G. H. Huang, and J. S. Yeomans, “An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty,” European Journal of Operational Research, vol. 167, no. 1, pp. 208–225, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. X. H. Nie, G. H. Huang, D. Wang, and H. L. Li, “Robust optimisation for inexact water quality management under uncertainty,” Civil Engineering and Environmental Systems, vol. 25, no. 2, pp. 167–184, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. S. A. Torabi and E. Hassini, “An interactive possibilistic programming approach for multiple objective supply chain master planning,” Fuzzy Sets and Systems, vol. 159, no. 2, pp. 193–214, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Herrera and J. L. Verdegay, “Three models of fuzzy integer linear programming,” European Journal of Operational Research, vol. 83, no. 3, pp. 581–593, 1995. View at Google Scholar · View at Scopus
  24. M. Delgado, J. L. Verdegay, and M. A. Vila, “A general model for fuzzy linear programming,” Fuzzy Sets and Systems, vol. 29, no. 1, pp. 21–29, 1989. View at Google Scholar · View at Scopus
  25. W. Chang, “Ranking of fuzzy utilities with triangular membership functions,” in Proceedingd of International Conference on Policy Analysis and Information Systems, pp. 263–272, 1981.
  26. R. R. Yager, “Ranking fuzzy subsets over the unit interval,” in Proceedings of the International Conference on Decision and Control (CDC '78), pp. 1435–1437, San Diego, Calif, USA, 1978.
  27. R. R. Yager, “A procedure for ordering fuzzy subsets of the unit interval,” Information Sciences, vol. 24, no. 2, pp. 143–161, 1981. View at Google Scholar · View at Scopus
  28. R. R. Yager, “Mathematical programming approach to inference with the capability of implementing default rules,” International Journal of Man-Machine Studies, vol. 29, no. 6, pp. 685–714, 1988. View at Google Scholar · View at Scopus
  29. J. M. Cadenas and J. L. Verdegay, “Using fuzzy numbers in linear programming,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 27, no. 6, pp. 1016–1022, 1997. View at Google Scholar · View at Scopus
  30. H. Ishibuchi and H. Tanaka, “Multiobjective programming in optimization of the interval objective function,” European Journal of Operational Research, vol. 48, no. 2, pp. 219–225, 1990. View at Google Scholar · View at Scopus
  31. Y. P. Li, G. H. Huang, and S. L. Nie, “An interval-parameter multi-stage stochastic programming model for water resources management under uncertainty,” Advances in Water Resources, vol. 29, no. 5, pp. 776–789, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. B. Liu and K. Iwamura, “Chance constrained programming with fuzzy parameters,” Fuzzy Sets and Systems, vol. 94, no. 2, pp. 227–237, 1998. View at Google Scholar · View at Scopus