Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 654845, 10 pages
http://dx.doi.org/10.1155/2013/654845
Research Article

Application of the Classification and Regression Trees for Modeling the Laser Output Power of a Copper Bromide Vapor Laser

1Department of Physics, Technical University of Sofia, Branch Plovdiv, 25 Tzanko Djusstabanov Street, 4000 Plovdiv, Bulgaria
2Department of Applied Mathematics and Modeling, University of Plovdiv, 24 Tzar Assen Street, 4000 Plovdiv, Bulgaria

Received 11 February 2013; Accepted 20 April 2013

Academic Editor: Bin Liu

Copyright © 2013 Iliycho Petkov Iliev et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. V. Sabotinov, “Metal vapor lasers,” in Gas Lasers, M. Endo and R. F. Walter, Eds., pp. 449–494, CRC Press, Boca Raton, Fla, USA, 2006. View at Google Scholar
  2. P. G. Foster, Industrial applications of copper bromide laser technology [Ph.D. dissertation], University of Adelaide, School of Chemistry and Physics, Department of Physics and Mathematical Physics, Adelaide, Australia, 2005.
  3. M. J. Kushner and B. E. Warner, “Large-bore copper-vapor lasers: kinetics and scaling issues,” Journal of Applied Physics, vol. 54, no. 6, pp. 2970–2982, 1983. View at Publisher · View at Google Scholar · View at Scopus
  4. “Numerical modeling of low-temperature plasmas,” in Encyclopedia of Low-Temperature Plasma, Series B, M. Ianus, Ed., vol. 7, Moscow, Russia, 2004.
  5. A. M. Boichenko, G. S. Evtushenko, and S. N. Torgaev, “Simulation of a CuBr laser,” Laser Physics, vol. 18, no. 12, pp. 1522–1525, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. S. G. Gocheva-Ilieva and I. P. Iliev, Statistical Models of Characteristics of Metal Vapor Lasers, Nova Science Publishers, New York, NY, USA, 2011.
  7. I. P. Iliev, S. G. Gocheva-Ilieva, D. N. Astadjov, N. P. Denev, and N. V. Sabotinov, “Statistical analysis of the CuBr laser efficiency improvement,” Optics and Laser Technology, vol. 40, no. 4, pp. 641–646, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. I. P. Iliev, S. G. Gocheva-Ilieva, D. N. Astadjov, N. P. Denev, and N. V. Sabotinov, “Statistical approach in planning experiments with a copper bromide vapor laser,” Quantum Electronics, vol. 38, no. 5, pp. 436–440, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. I. P. Iliev, S. G. Gocheva-Ilieva, and N. V. Sabotinov, “Classification analysis of CuBr laser parameters,” Quantum Electronics, vol. 39, no. 2, pp. 143–146, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S. G. Gocheva-Ilieva and I. P. Iliev, “Parametric and nonparametric empirical regression models: case study of copper bromide laser generation,” Mathematical Problems in Engineering, vol. 2010, Article ID 697687, 15 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. S. G. Gocheva-Ilieva and I. P. Iliev, “Nonlinear regression model of copper bromide laser generation,” in Proceedings of 19th International Conference on Computational Statistics (COMPSTAT '10), Y. Lechevallier and G. Saporta, Eds., pp. 1063–1070, Physica/Springer ebook, Paris, France, August 2010, http://www-roc.inria.fr/axis/COMPSTAT2010/images/contents_ebook.pdf.
  12. I. P. Iliev, D. S. Voynikova, and S. G. Gocheva-Ilieva, “Simulation of the output power of copper bromide lasers by the MARS method,” Quantum Electronics, vol. 42, no. 4, pp. 298–303, 2012. View at Google Scholar
  13. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression Trees, Wadsworth Advanced Books and Software, Belmont, Calif, USA, 1984. View at Zentralblatt MATH · View at MathSciNet
  14. D. Steinberg and P. Colla, CART: Tree-Structured Non-Parametric Data Analysis, Salford Systems, San Diego, Calif, USA, 1995.
  15. CART Classification and Regression Trees. October 2012, http://www.salford-systems.com/en/products/cart.
  16. N. V. Sabotinov, P. K. Telbizov, and S. D. Kalchev, Copper bromide vapour laser. Bulgarian patent No. 28674, 1975.
  17. N. V. Sabotinov, N. K. Vuchkov, and D. N. Astadjov, “Gas laser discharge tube with copper halide vapors,” United States patent 4635271, 1987.
  18. D. N. Astadjov, N. V. Sabotinov, and N. K. Vuchkov, “Effect of hydrogen on CuBr laser power and efficiency,” Optics Communications, vol. 56, no. 4, pp. 279–282, 1985. View at Google Scholar · View at Scopus
  19. D. N. Astadjov, K. D. Dimitrov, C. E. Little, N. V. Sabotinov, and N. K. Vuchkov, “A CuBr laser with 1.4 W/cm3 average output power,” IEEE Journal of Quantum Electronics, vol. 30, no. 6, pp. 1358–1360, 1994. View at Publisher · View at Google Scholar · View at Scopus
  20. V. M. Stoilov, D. N. Astadjov, N. K. Vuchkov, and N. V. Sabotinov, “High spatial intensity 10 W-CuBr laser with hydrogen additives,” Optical and Quantum Electronics, vol. 32, no. 11, pp. 1209–1217, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. NATO contract SfP, 97 2685, 50W Copper Bromide laser, 2000.
  22. D. N. Astadjov, K. D. Dimitrov, D. R. Jones et al., “Influence on operating characteristics of scaling sealed-off CuBr lasers in active length,” Optics Communications, vol. 135, no. 4–6, pp. 289–294, 1997. View at Google Scholar · View at Scopus
  23. K. D. Dimitrov and N. V. Sabotinov, “High-power and high-efficiency copper bromide vapor laser,” in 9th International School on Quantum Electronics: Lasers—Physics and Applications, vol. 3052 of Proceedings of SPIE, pp. 126–130, 1996.
  24. D. N. Astadjov, K. D. Dimitrov, D. R. Jones et al., “Copper bromide laser of 120-W average output power,” IEEE Journal of Quantum Electronics, vol. 33, no. 5, pp. 705–709, 1997. View at Google Scholar · View at Scopus
  25. N. P. Denev, D. N. Astadjov, and N. V. Sabotinov, “Analysis of the copper bromide laser efficiency,” in Proceedings of the 4th International Symposium on Laser Technologies and Lasers, pp. 153–156, Plovdiv, Bulgaria, 2006.
  26. A. J. Izenman, Modern Multivariate Statistical Techniques Regression, Classification, and Manifold Learning, Springer, New York, NY, USA, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  27. R. Nisbet, J. Elder, and G. Miner, Handbook of Statistical Analysis and Data Mining Applications, Elsevier/Academic Press, Burlington, Mass, USA, 2009.
  28. D. Steinberg and M. Golovnya, CART 6.0 USer's Guide, Salford Systems, San Diego, Calif, USA, 2006.