Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013 (2013), Article ID 789853, 13 pages
http://dx.doi.org/10.1155/2013/789853
Research Article

Settlement Analysis of a Confined Sand Aquifer Overlain by a Clay Layer due to Single Well Pumping

1College of Mechanics and Engineering Department, Liaoning Technical University, Fuxin, Liaoning 123000, China
2College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, Zhejiang 310058, China
3Shanghai Geotechnical Investigations & Design Institute Co., Ltd., Shanghai 200031, China

Received 21 November 2012; Revised 16 January 2013; Accepted 17 January 2013

Academic Editor: Fei Kang

Copyright © 2013 Wen-jie Niu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Budhu and I. B. Adiyaman, “Mechanics of land subsidence due to groundwater pumping,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 34, no. 14, pp. 1459–1478, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. R. L. Hu, Z. Q. Yue, L. C. Wang, and S. J. Wang, “Review on current status and challenging issues of land subsidence in China,” Engineering Geology, vol. 76, no. 1-2, pp. 65–77, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. J. H. Kihm, J. M. Kim, S. H. Song, and G. S. Lee, “Three-dimensional numerical simulation of fully coupled groundwater flow and land deformation due to groundwater pumping in an unsaturated fluvial aquifer system,” Journal of Hydrology, vol. 335, no. 1-2, pp. 1–14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. A. I. Calderhead, R. Therrien, A. Rivera, R. Martel, and J. Garfias, “Simulating pumping-induced regional land subsidence with the use of InSAR and field data in the Toluca Valley, Mexico,” Advances in Water Resources, vol. 34, no. 1, pp. 83–97, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Shi, J. Wu, S. Ye et al., “Regional land subsidence simulation in Su-Xi-Chang area and Shanghai City, China,” Engineering Geology, vol. 100, no. 1-2, pp. 27–42, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. A. M. Wilson and S. Gorelick, “The effects of pulsed pumping on land subsidence in the Santa Clara Valley, California,” Journal of Hydrology, vol. 174, no. 3-4, pp. 375–396, 1996. View at Google Scholar · View at Scopus
  7. O. J. Santos Jr. and T. B. Celestino, “Artificial neural networks analysis of São Paulo subway tunnel settlement data,” Tunnelling and Underground Space Technology, vol. 23, no. 5, pp. 481–491, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Chen, S. Pei, and J. J. Jiao, “Land subsidence caused by groundwater exploitation in Suzhou City, China,” Hydrogeology Journal, vol. 11, no. 2, pp. 275–287, 2003. View at Google Scholar · View at Scopus
  9. J. Hoffmann, D. L. Galloway, and H. A. Zebker, “Inverse modeling of interbed storage parameters using land subsidence observations, Antelope Valley, California,” Water Resources Research, vol. 39, no. 2, p. 1231, 2003. View at Google Scholar · View at Scopus
  10. D. Bernaud, L. Dormieux, and S. Maghous, “A constitutive and numerical model for mechanical compaction in sedimentary basins,” Computers and Geotechnics, vol. 33, no. 6-7, pp. 316–329, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Liu and D. C. Helm, “Inverse procedure for calibrating parameters that control land subsidence caused by subsurface fluid withdrawal: 1. Methods,” Water Resources Research, vol. 44, no. 7, pp. 1–15, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. T. Keller, M. Lamande, S. Peth et al., “An interdisciplinary approach towards improved understanding of soil deformation during compaction,” Soil & Tillage Research, vol. 128, pp. 61–80, 2013. View at Google Scholar
  13. T. J. Burbey, “Stress-strain analyses for aquifer-system characterization,” Ground Water, vol. 39, no. 1, pp. 128–136, 2001. View at Google Scholar · View at Scopus
  14. T. J. Burbey, “Use of vertical and horizontal deformation data with inverse models to quantify parameters during aquifer testing,” in Proceedings of the 7th International Symposium on Land Subsidence, Shanghai, China, 2005.
  15. D. L. Rudolph and E. O. Frind, “Hydraulic response of highly compressible aquitards during consolidation,” Water Resources Research, vol. 27, no. 1, pp. 17–30, 1991. View at Publisher · View at Google Scholar · View at Scopus
  16. S. A. Leake and D. L. Galloway, MODFLOW Ground-Water Model-User Guide to the Subsidence and Aquifer-System Compaction Package (SUB-WT) for Watertable Aquifers, Techniques and Methods 6-A23, US. Geological Survey, 2007.
  17. S. Q. Wang, Y. P. Wee, and G. Ofori, “DSSDSS: a decision support system for dewatering systems selection,” Building and Environment, vol. 37, no. 6, pp. 625–645, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Bouwer, “Land subsidence and cracking due to ground-water depletion,” Ground Water, vol. 15, no. 5, pp. 358–364, 1977. View at Google Scholar · View at Scopus
  19. H. Sun, D. Grandstaff, and R. Shagam, “Land subsidence due to groundwater withdrawal: potential damage of subsidence and sea level rise in southern New Jersey, USA,” Environmental Geology, vol. 37, no. 4, pp. 290–296, 1999. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Chen, S. Pei, and J. J. Jiao, “Land subsidence caused by groundwater exploitation in Suzhou City, China,” Hydrogeology Journal, vol. 11, no. 2, pp. 275–287, 2003. View at Google Scholar · View at Scopus
  21. D. Roy and K. E. Robinson, “Surface settlements at a soft soil site due to bedrock dewatering,” Engineering Geology, vol. 107, no. 3-4, pp. 109–117, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Li, X. Tang, and T. Ma, “Land subsidence caused by groundwater exploitation in the Hangzhou-Jiaxing-Huzhou plain, China,” Hydrogeology Journal, vol. 14, no. 8, pp. 1652–1665, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. X. Shi, Y. Xue, J. Wu et al., “Characterization of regional land subsidence in Yangtze Delta, China: the example of Su-Xi-Chang area and the city of Shanghai,” Hydrogeology Journal, vol. 16, no. 3, pp. 593–607, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Wu, X. Shi, S. Ye et al., “Numerical simulation of viscoelastoplastic land subsidence due to groundwater overdrafting in shanghai, China,” Journal of Hydrologic Engineering, vol. 15, no. 3, pp. 223–236, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. Z. X. Wei, G. F. Yang, and J. Y. Yu, “Stress-strain characteristic of the confined aquifer system and land subsidence controlling countermeasures in Shanghai,” The Chinese Journal of Geological Hazard and Control, vol. 16, no. 1, pp. 5–8, 2005 (Chinese). View at Google Scholar
  26. S. van Asselen, E. Stouthamer, and T. W. J. van Asch, “Effects of peat compaction on delta evolution: a review on processes, responses, measuring and modeling,” Earth-Science Reviews, vol. 92, no. 1-2, pp. 35–51, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. A. S. Gregory, W. R. Whalley, C. W. Watts, N. R. A. Bird, P. D. Hallett, and A. P. Whitmore, “Calculation of the compression index and precompression stress from soil compression test data,” Soil and Tillage Research, vol. 89, no. 1, pp. 45–57, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Silliman and D. Higgins, “An analytical solution for steady-state flow between aquifers through an open well,” Ground Water, vol. 28, no. 2, pp. 184–190, 1990. View at Google Scholar · View at Scopus
  29. M. Bakker and K. Hemker, “A Dupuit formulation for flow in layered, anisotropic aquifers,” Advances in Water Resources, vol. 25, no. 7, pp. 747–754, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Bakker, “Simulating groundwater flow in multi-aquifer systems with analytical and numerical Dupuit-models,” Journal of Hydrology, vol. 222, no. 1–4, pp. 55–64, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Li, N. R. Diao, and Z. H. Fang, “Analysis of seepage flow in a confined aquifer with a standing column well,” Journal of Hydrodynamics, vol. 19, no. 1, pp. 84–91, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. D. Bloomquist, A. A. Viala, and M. Gartner, Development of a Field Permeability Apparatus: The Vertical And Horizontal Insitu Permeameter (VAHIP), Department of Civil and Coastal Engineering, University of Florida, Gainesville, Fla, USA, 2007.
  33. W. J. Niu, “An approximated analytical solution to the problem of single well pumping within an irregular boundary,” in Proceedings of the Civil Engineering and Urban Planning (ASCE '12), pp. 88–92, Yantai, China, 2012.
  34. M. M. Monkul and O. Önal, “A Visual Basic program for analyzing oedometer test results and evaluating intergranular void ratio,” Computers and Geosciences, vol. 32, no. 5, pp. 696–703, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. Z. W. Li, Y. Zhang, and C. L. Chen, “Disposal for pumping well in phreatic water aquifer in three-dimensional numerical simulaion,” Journal of Water Resources and Architectural Engineering, vol. 6, no. 2, pp. 121–126, 2008 (Chinese). View at Google Scholar
  36. Y. S. Xu, S. L. Shen, C. P. Tang, and H. Jiang, “Three-dimensional analysis of land subsidence based on groundwater flow model,” Rock and Soil Mechanics, vol. 26, pp. 109–112, 2005 (Chinese). View at Google Scholar · View at Scopus
  37. C. B. Zhanga, L. H. Chena, and Y. P. Liu, “Triaxial compression test of soil-root composites to evaluate influence of roots on soil shear strength,” Ecological Engineering, vol. 36, pp. 19–26, 2010. View at Google Scholar
  38. S. J. Lee, Y. M. A. Hashash, and E. G. Nezami, “Simulation of triaxial compression tests with polyhedral discrete elements,” Computers and Geotechnics, vol. 43, pp. 92–100, 2012. View at Google Scholar