Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 825143, 8 pages
http://dx.doi.org/10.1155/2013/825143
Research Article

Finite-Frequency Filter Design for Networked Control Systems with Missing Measurements

1College of Information Science and Engineering, Northeastern University, Liaoning, Shenyang 110004, China
2State Key Laboratory of Robotics, Shenyang Institute of Automation, (CAS), Liaoning, Shenyang 110016, China
3College of Information, Shenyang Institute of Engineering, Liaoning, Shenyang 110136, China

Received 26 March 2013; Revised 22 May 2013; Accepted 2 June 2013

Academic Editor: Bo Shen

Copyright © 2013 Dan Ye et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper is concerned with the problem of robust filter design for networked control systems (NCSs) with random missing measurements. Different from existing robust filters, the proposed one is designed in finite-frequency domain. With consideration of possible missing data, the NCSs are first modeled to Markov jump systems (MJSs). A finite-frequency stochastic performance is subsequently given that extends the standard performance, and then a sufficient condition guaranteeing the system to be with such a performance is derived in terms of linear matrix inequality (LMI). With the aid of this condition, a procedure of filter synthesis is proposed to deal with noises in the low-, middle-, and high-frequency domains, respectively. Finally, an example about the lateral-directional dynamic model of the NASA High Alpha Research Vehicle (HARV) is carried out to illustrate the effectiveness of the proposed method.