Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2013, Article ID 895640, 10 pages
http://dx.doi.org/10.1155/2013/895640
Research Article

Fractional-Order Generalized Predictive Control: Application for Low-Speed Control of Gasoline-Propelled Cars

1Escuela Técnica Superior de Ingeniería Informática, UNED, Juan del Rosal, 16, 28040 Madrid, Spain
2California PATH, University of California at Berkeley, Richmond, CA 94804-4698, USA
3Industrial Engineering School, University of Extremadura, Avenida de Elvas s/n, 06071 Badajoz, Spain

Received 9 November 2012; Accepted 22 January 2013

Academic Editor: Clara Ionescu

Copyright © 2013 M. Romero et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999. View at Zentralblatt MATH · View at MathSciNet
  2. K. B. Oldham and J. Spanier, The Fractional Calculus, vol. 111 of Mathematics in Science and Engineering, Academic Press, New York, NY, USA, 1974. View at Zentralblatt MATH · View at MathSciNet
  3. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, NY, USA, 1993. View at Zentralblatt MATH · View at MathSciNet
  4. B. M. Vinagre, C. A. Monje, and A. J. Calderón, “Fractional order systems and fractional order control actions,” in Proceedings of the 41st Conference on Decision and Control. Tutorial Workshop 2: Fractional Calculus Applications in Automatic Control and Robotics, Las Vegas, Nev, USA, 2002.
  5. I. Podlubny, “Numerical solution of ordinary fractional differential equations by the fractional difference method,” in Advances in Difference Equations (Veszprém, 1995), pp. 507–515, Gordon and Breach, Amsterdam, The Netherlands, 1997. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. A. Oustaloup, B. Mathieu, and P. Lanusse, “The CRONE control of resonant plants: application to a flexible transmission,” European Journal of Control, vol. 1, pp. 113–121, 1995. View at Google Scholar
  7. I. Podlubny, “Fractional-order systems and PIλDμ-controllers,” IEEE Transactions on Automatic Control, vol. 44, no. 1, pp. 208–214, 1999. View at Publisher · View at Google Scholar · View at MathSciNet
  8. I. Petráš, “The fractional-order controllers,” Journal of Electrical Engineering, vol. 50, pp. 284–288, 1999. View at Google Scholar
  9. O. P. Agrawal, “A general formulation and solution scheme for fractional optimal control problems,” Nonlinear Dynamics, vol. 38, no. 1–4, pp. 323–337, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. O. P. Agrawal and D. Baleanu, “A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems,” Journal of Vibration and Control, vol. 13, no. 9-10, pp. 1269–1281, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. C. Tricaud and Y. Q. Chen, “Solving fractional order optimal control problms in RIOTS_95—a general purpose optimal control problems solver,” in Proceedings of the 3rd IFAC Workshop on Fractional Differentiation and Its Applications, Ankara, Turkey, 2008.
  12. M. O. Efe, “Fractional fuzzy adaptive sliding-mode control of a 2-DOF direct-drive robot arm,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 38, no. 6, pp. 1561–1570, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. I. S. Jesus, J. T. Machado, and R. S. Barbosa, “Fractional order nonlinear control of heat system,” in Proceedings of the 3rd IFAC Workshop on Fractional Differentiation and Its Applications, Ankara, Turkey, 2008.
  14. Y. Li, Y. Chen, and H.-S. Ahn, “Fractional-order iterative learning control for fractional-order linear systems,” Asian Journal of Control, vol. 13, no. 1, pp. 54–63, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. M. Romero, A. P. de Madrid, C. Mañoso, and R. Hernandez, “Generalized predictive control of arbitrary real order,” in New Trends in Nanotechnology and Fractional Calculus Applications, D. Baleanu, Z. B. Guvenc, and J. A. T. Machado, Eds., pp. 411–418, Springer, Dordrecht, The Netherlands, 2009. View at Google Scholar
  16. E. F. Camacho and C. Bordons, Model Predictive Control, Springer, New York, NY, USA, 2nd edition, 2004.
  17. J. A. Rossiter, Model Based Predictive Control. A Practical Approach, CRC Press, New York, NY, USA, 2003.
  18. J. M. Maciejowski, Predictive Control with Constraints, Prentice Hall, New York, NY, USA, 2002.
  19. J. Qin and T. Badgwell, “An overview of industrial model predictive control technology,” in Proceedings of the International Conference on Chemical Process, J. C. Kantor, C. E. Garcia, and B. Carnahan, Eds., vol. 93 of AIChE Symposium Series, pp. 232–256, 1997.
  20. C. R. Cutler and B. L. Ramaker, “Dynamic matrix control—a computer control algorithm,” in Proceedings of Joint Automatic Control Conference, San Francisco, Calif, USA, 1980.
  21. W. L. Luyben, Ed., Practical Distillation Control, Van Nostrand Reinhold, New York, NY, USA, 1992.
  22. T. Alvarez, M. Sanzo, and C. de Prada, “Identification and constrained multivariable predictive control of chemical reactors,” in Proceedings of the IEEE Conference on Control Applications, pp. 663–664, Albany, NY, USA, September 1995. View at Scopus
  23. J. M. Martín Sánchez and J. Rodellar, Adaptive Predictive Control. From the Concepts to Plant Optimization, Prentice Hall, Upper Saddle River, NJ, USA, 1996.
  24. E. F. Camacho and M. Berenguel, “Application of generalized predictive control to a solar power plant,” in Proceedings of the IEEE Conference on Control Applications, pp. 1657–1662, Glasgow, UK, August 1994. View at Scopus
  25. F. Han, C. Zuo, W. Wu, J. Li, and Z. Liu, “Model predictive control of the grain drying process,” Mathematical Problems in Engineering, vol. 2012, Article ID 584376, 12 pages, 2012. View at Publisher · View at Google Scholar
  26. D. A. Linkens and M. Mahfouf, “Generalized predictive control (GPC) in clinical anaesthesia,” in Advances in Model-Based Predictive Control, D. W. Clarke, Ed., pp. 429–445, Oxford University Press, Oxford, UK, 1994. View at Google Scholar
  27. H. Yang and S. Li, “A data-driven bilinear predictive controller design based on subspace method,” Asian Journal of Control, vol. 13, no. 2, pp. 345–349, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  28. X.-H. Chang and G.-H. Yang, “Fuzzy robust constrained model predictive control for nonlinear systems,” Asian Journal of Control, vol. 13, no. 6, pp. 947–955, 2011. View at Publisher · View at Google Scholar · View at MathSciNet
  29. D. W. Clarke, C. Mohtadi, and P. S. Tuffs, “Generalized predictive control. Part I. The basic algorithm,” Automatica, vol. 23, no. 2, pp. 137–148, 1987. View at Google Scholar · View at Scopus
  30. D. W. Clarke, C. Mohtadi, and P. S. Tuffs, “Generalized predictive control. Part II. Extensions and interpretations,” Automatica, vol. 23, no. 2, pp. 149–160, 1987. View at Google Scholar · View at Scopus
  31. M. Romero, I. Tejado, B. M. Vinagre, and A. P. de Madrid, “Position and velocity control of a servo by using GPC of arbitrary real order,” in New Trends in Nanotechnology and Fractional Calculus Applications, D. Baleanu, Z. B. Guvenc, and J. A. T. Machado, Eds., pp. 369–376, Springer, Dordrecht, The Netherlands, 2009. View at Google Scholar
  32. M. Romero, I. Tejado, J. I. Suárez, B. M. Vinagre, and A. P. De Madrid, “GPC strategies for the lateral control of a networked AGV,” in Proceedings of the 5th International Conference on Mechatronics (ICM '09), Málaga, Spain, April 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. I. Tejado, M. Romero, B. M. Vinagre, A. P. de Madrid, and Y. Q. Chen, “Experiences on an internet link characterization and networked control of a smart wheel,” International Journal of Bifurcation and Chaos, vol. 22, no. 4, 2012. View at Publisher · View at Google Scholar
  34. R. Bishop, “A survey of intelligent vehicle applications worldwide,” in Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 25–30, Dearborn, Mich, USA, 2000.
  35. G. Marsden, M. McDonald, and M. Brackstone, “Towards an understanding of adaptive cruise control,” Transportation Research Part C, vol. 9, no. 1, pp. 33–51, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. A. Vahidi and A. Eskandarian, “Research advances in intelligent collision avoidance and adaptive cruise control,” IEEE Transactions on Intelligent Transportation Systems, vol. 4, no. 3, pp. 132–153, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. B. Van Arem, C. J. G. Van Driel, and R. Visser, “The impact of cooperative adaptive cruise control on traffic-flow characteristics,” IEEE Transactions on Intelligent Transportation Systems, vol. 7, no. 4, pp. 429–436, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Aono and T. Kowatari, “Throttle-control algorithm for improving engine response based on air-intake model and throttle-response model,” IEEE Transactions on Industrial Electronics, vol. 53, no. 3, pp. 915–921, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. N. B. Hounsell, B. P. Shrestha, J. Piao, and M. McDonald, “Review of urban traffic management and the impacts of new vehicle technologies,” IET Intelligent Transport Systems, vol. 3, no. 4, pp. 419–428, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Moon, I. Moon, and K. Yi, “Design, tuning, and evaluation of a full-range adaptive cruise control system with collision avoidance,” Control Engineering Practice, vol. 17, no. 4, pp. 442–455, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. L. Cai, A. B. Rad, and W. L. Chan, “An intelligent longitudinal controller for application in semiautonomous vehicles,” IEEE Transactions on Industrial Electronics, vol. 57, no. 4, pp. 1487–1497, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. V. Milanés, J. Villagrá, J. Godoy, and C. González, “Comparing fuzzy and intelligent PI controllers in stop-and-go manoeuvres,” IEEE Transactions on Control Systems Technology, vol. 20, no. 3, pp. 770–778, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. I. Tejado, V. Milanés, J. Villagrá, J. Godoy, H. HosseinNia, and B. M. Vinagre, “Low speed control of an autonomous vehicle by using a fractional PI,” in Proceedings of the 18th World Congress International Federation Automatic Control, pp. 15025–15030, Milano, Italy, 2011.
  44. T.-W. Yoon and D. W. Clarke, “Observer design in receding-horizon predictive control,” International Journal of Control, vol. 61, no. 1, pp. 171–191, 1995. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  45. C. Mañoso, A. P. de Madrid, M. Romero, and R. Hernández, “GPC with structured perturbations: the influence of prefiltering and terminal equality constraints,” ISRN Applied Mathematics, vol. 2012, Article ID 623484, 12 pages, 2012. View at Publisher · View at Google Scholar
  46. M. Romero, A. P. de Madrid, C. Mañoso, and B. M. Vinagre, “Fractional-order generalized predictive control: formulation and some properties,” in proceedings of the 11th International Conference on Control, Automation, Robotics and Vision (ICARCV '10), pp. 1495–1500, Singapore, December 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Romero, A. P. de Madrid, and B. M. Vinagre, “Arbitrary real-order cost functions for signals and systems,” Signal Processing, vol. 91, no. 3, pp. 372–378, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Romero, A. P. de Madrid, C. Mañoso, and B. M. Vinagre, “A survey of fractional-order generalized predictive control,” in Proceedings of the 51st Conference on Decision and Control, pp. 6867–6872, Maui, Hawaii, USA, 2012.
  49. M. Romero, I. Tejado, A. P. de Madrid, and B. M. Vinagre, “Tuning predictive controllers with optimization: application to GPC and FGPC,” in Proceedings of the 18th World World Congress International Federation Automatic Control, pp. 10824–10829, Milano, Italy, 2011.
  50. C. A. Monje, A. J. Calderón, B. M. Vinagre, Y. Chen, and V. Feliu, “On fractional PIλ controllers: some tuning rules for robustness to plant uncertainties,” Nonlinear Dynamics, vol. 38, no. 1–4, pp. 369–381, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. Y. Q. Chen, H. Dou, B. M. Vinagre, and C. A. Monje, “A robust tuning method for fractional order PI controllers,” in Proceedings of the 2nd IFAC Workshop on Fractional Differentiation and Its Applications, Porto, Portugal, 2006.
  52. C. A. Monje, B. M. Vinagre, V. Feliu, and Y. Chen, “Tuning and auto-tuning of fractional order controllers for industry applications,” Control Engineering Practice, vol. 16, no. 7, pp. 798–812, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. Mathworks Inc., “Matlab optimization toolbox user's guide,” 2007.
  54. V. Milanés, C. González, J. E. Naranjo, E. Onieva, and T. de Pedro, “Electro-hydraulic braking system for autonomous vehicles,” International Journal of Automotive Technology, vol. 11, no. 1, pp. 89–95, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. V. Milanés, D. F. Llorca, B. M. Vinagre, C. González, and M. A. Sotelo, “Clavileno: evolution of an autonomous car,” in Proceedings of the 13th IEEE International Intelligent Transportation Systems, Madeira, Portugal, 2010.
  56. Mathworks Inc., “Matlab identification toolbox user's guide,” 2007.
  57. BECHTEL, “Compendium of executive summaries from the maglev system concept definition final reports,” Tech. Rep., U.S. Department of Transportation, 1993, http://ntl.bts.gov/DOCS/CES.html. View at Google Scholar