Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2014, Article ID 107246, 12 pages
http://dx.doi.org/10.1155/2014/107246
Research Article

Reorganizing Complex Network to Improve Large-Scale Multiagent Teamwork

School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Received 5 February 2014; Accepted 26 February 2014; Published 14 April 2014

Academic Editor: Guoqiang Hu

Copyright © 2014 Yang Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Large-scale multiagent teamwork has been popular in various domains. Similar to human society infrastructure, agents only coordinate with some of the others, with a peer-to-peer complex network structure. Their organization has been proven as a key factor to influence their performance. To expedite team performance, we have analyzed that there are three key factors. First, complex network effects may be able to promote team performance. Second, coordination interactions coming from their sources are always trying to be routed to capable agents. Although they could be transferred across the network via different paths, their sources and sinks depend on the intrinsic nature of the team which is irrelevant to the network connections. In addition, the agents involved in the same plan often form a subteam and communicate with each other more frequently. Therefore, if the interactions between agents can be statistically recorded, we are able to set up an integrated network adjustment algorithm by combining the three key factors. Based on our abstracted teamwork simulations and the coordination statistics, we implemented the adaptive reorganization algorithm. The experimental results briefly support our design that the reorganized network is more capable of coordinating heterogeneous agents.