Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2014, Article ID 137616, 13 pages
http://dx.doi.org/10.1155/2014/137616
Research Article

Approximate Sparsity and Nonlocal Total Variation Based Compressive MR Image Reconstruction

Department of Information Engineering, Nanchang Institute of Technology, Nanchang, China

Received 27 March 2014; Revised 11 August 2014; Accepted 14 August 2014; Published 28 August 2014

Academic Editor: Fatih Yaman

Copyright © 2014 Chengzhi Deng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. P. Pruessmann, “Encoding and reconstruction in parallel MRI,” NMR in Biomedicine, vol. 19, no. 3, pp. 288–299, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Sharif, J. A. Derbyshire, A. Z. Faranesh, and Y. Bresler, “Patient-adaptive reconstruction and acquisition in dynamic imaging with sensitivity encoding (PARADISE),” Magnetic Resonance in Medicine, vol. 64, no. 2, pp. 501–513, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: the application of compressed sensing for rapid MR imaging,” Magnetic Resonance in Medicine, vol. 58, no. 6, pp. 1182–1195, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Donoho, J. M. Santos, and J. M. Pauly, “Compressed sensing MRI,” IEEE Signal Processing Magazine, vol. 2, pp. 72–82, 2008. View at Google Scholar
  5. J. Huang, S. Zhang, and D. Metaxas, “Efficient MR image reconstruction for compressed MR imaging,” Medical Image Analysis, vol. 15, no. 5, pp. 670–679, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. Z. Zhang, Y. Shi, W. P. Ding, and B. C. Yin, “MR images reconstruction based on TVWL2-L1 model,” Journal of Visual Communication and Image Representation, vol. 2, pp. 187–195, 2013. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Majumdar and R. K. Ward, “On the choice of compressed sensing priors and sparsifying transforms for MR image reconstruction: An experimental study,” Signal Processing: Image Communication, vol. 27, no. 9, pp. 1035–1048, 2012. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Yang, Y. Zhang, and W. Yin, “A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data,” IEEE Journal on Selected Topics in Signal Processing, vol. 4, no. 2, pp. 288–297, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Ravishankar and Y. Bresler, “MR image reconstruction from highly undersampled k-space data by dictionary learning,” IEEE Transactions on Medical Imaging, vol. 30, no. 5, pp. 1028–1041, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Transactions on Information Theory, vol. 52, no. 2, pp. 489–509, 2006. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  11. D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  12. X. Qu, X. Cao, D. Guo, C. Hu, and Z. Chen, “Combined sparsifying transforms for compressed sensing MRI,” Electronics Letters, vol. 46, no. 2, pp. 121–123, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. F. Knoll, K. Bredies, T. Pock, and R. Stollberger, “Second order total generalized variation (TGV) for MRI,” Magnetic Resonance in Medicine, vol. 65, no. 2, pp. 480–491, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Donoho and J. Tanner, “Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing,” Philosophical Transactions of the Royal Society of London A, vol. 367, no. 1906, pp. 4273–4293, 2009. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  15. Z. B. Xu, X. Y. Chang, and F. M. Xu, “L-1/2 regularization: a thresholding representation theory and a fast solver,” IEEE Transactions on Neural Networks and Learning Systems, vol. 7, pp. 1013–1027, 2012. View at Google Scholar
  16. R. Chartrand, “Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data,” in Proceedings of the 6th IEEE International Conference on Biomedical Imaging: From Nano to Macro (ISBI '09), pp. 262–265, July 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Y. Jong, S. Tak, Y. Han, and W. P. Hyun, “Projection reconstruction MR imaging using FOCUSS,” Magnetic Resonance in Medicine, vol. 57, no. 4, pp. 764–775, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Trzasko and A. Manduca, “Highly undersampled magnetic resonance image reconstruction via homotopic l0-minimization,” IEEE Transactions on Medical Imaging, vol. 28, no. 1, pp. 106–121, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Chen and J. Z. Huang, “The benefit of tree sparsity in accelerated MRI,” Medical Image Analysis, vol. 18, pp. 834–842, 2014. View at Google Scholar
  20. S. Q. Ma, W. T. Yin, Y. Zhang, and A. Chakraborty, “An efficient algorithm for compressed MR imaging using total variation and wavelets,” in Proceeding of the 26th IEEE Conference on Computer Vision and Pattern Recognition (CVPR '08, pp. 1–8, Anchorage, Alaska, USA, June 2008. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Buades, B. Coll, and J. M. Morel, “A review of image denoising algorithms, with a new one,” Multiscale Modeling & Simulation, vol. 4, no. 2, pp. 490–530, 2005. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  22. F. F. Dong, H. L. Zhang, and D. X. Kong, “Nonlocal total variation models for multiplicative noise removal using split Bregman iteration,” Mathematical and Computer Modelling, vol. 55, no. 3-4, pp. 939–954, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  23. S. Yun and H. Woo, “Linearized proximal alternating minimization algorithm for motion deblurring by nonlocal regularization,” Pattern Recognition, vol. 44, no. 6, pp. 1312–1326, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  24. X. Zhang, M. Burger, and X. Bresson, “Bregmanized nonlocal regularization for deconvolution and sparse reconstruction,” SIAM Journal on Imaging Sciences, vol. 3, no. 3, pp. 253–276, 2011. View at Google Scholar · View at MathSciNet · View at Scopus
  25. W. Dong, X. Yang, and G. Shi, “Compressive sensing via reweighted TV and nonlocal sparsity regularisation,” Electronics Letters, vol. 49, no. 3, pp. 184–186, 2013. View at Publisher · View at Google Scholar · View at Scopus
  26. V. P. Gopi, P. Palanisamy, and K. A. Wahid, “MR image reconstruction based on iterative split Bregman algorithm and nonlocal total variation,” Computational and Mathematical Methods in Medicine, vol. 2013, Article ID 985819, 16 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  27. J. Huang and F. Yang, “Compressed magnetic resonance imaging based on wavelet sparsity and nonlocal total variation,” in Proceedings of the 9th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI '12), pp. 968–971, Barcelona, Spain, May 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Liang, H. F. Wang, Y. C. Chang, and L. L. Ying, “Sensitivity encoding reconstruction with nonlocal total variation regularization,” Magnetic Resonance in Medicine, vol. 65, no. 5, pp. 1384–1392, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Mohimani, M. Babaie-Zadeh, and C. Jutten, “A fast approach for overcomplete sparse decomposition based on smoothed L0 norm,” IEEE Transactions on Signal Processing, vol. 57, pp. 289–301, 2009. View at Google Scholar
  30. J.-H. Wang, Z.-T. Huang, Y.-Y. Zhou, and F.-H. Wang, “Robust sparse recovery based on approximate L0 norm,” Acta Electronica Sinica, vol. 40, no. 6, pp. 1185–1189, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo, “An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems,” IEEE Transactions on Image Processing, vol. 20, no. 3, pp. 681–695, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  32. P. L. Combettes and V. R. Wajs, “Signal recovery by proximal forward-backward splitting,” Multiscale Modeling & Simulation, vol. 4, pp. 1168–1200, 2005. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus