Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2014, Article ID 142795, 15 pages
http://dx.doi.org/10.1155/2014/142795
Research Article

Intelligent Mechanical Fault Diagnosis Based on Multiwavelet Adaptive Threshold Denoising and MPSO

1School of Mechanical Engineering, Jiangnan University, 1800 Li Hu Avenue, Wuxi, Jiangsu 214122, China
2Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Wuxi 214122, China
3School of Mechanical & Electrical Engineering, Beijing University of Chemical Technology, Chaoyang District, Beijing 100029, China
4Graduate School of Bioresources, Mie University, Mie 514-8507, Japan

Received 16 April 2014; Revised 12 June 2014; Accepted 29 June 2014; Published 22 July 2014

Academic Editor: Weihua Li

Copyright © 2014 Hao Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Pacas, S. Villwock, and R. Dietrich, “Bearing damage detection in permanent magnet synchronous machines,” in Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE '09), pp. 1098–1103, September 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. J. R. Stack, T. G. Habetler, and R. G. Harley, “Fault-signature modeling and detection of inner-race bearing faults,” IEEE Transactions on Industry Applications, vol. 42, no. 1, pp. 61–68, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Li, P. Chen, S. Wang, and H. Wang, “Intelligent diagnosis method for bearing using non-dimensional symptom parameters and Ant Colony Optimization,” Information, vol. 15, no. 2, pp. 867–877, 2012. View at Google Scholar · View at Scopus
  4. C. Bianchini, F. Immovilli, M. Cocconcelli, R. Rubini, and A. Bellini, “Fault detection of linear bearings in brushless AC linear motors by vibration analysis,” IEEE Transactions on Industrial Electronics, vol. 58, no. 5, pp. 1684–1694, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. B. Liu and S.-F. Ling, “On the selection of informative wavelets for machinery diagnosis,” Mechanical Systems and Signal Processing, vol. 13, no. 1, pp. 145–162, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Lin and L. Qu, “Feature extraction based on morlet wavelet and its application for mechanical fault diagnosis,” Journal of Sound and Vibration, vol. 234, no. 1, pp. 135–148, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. Q. B. Zhu, “Gear fault diagnosis system based on wavelet neural networks,” Dynamics of Continuous Discrete and Impulsive Systems-series A-Mathematical Analysis, vol. 13, part 2, pp. 671–673, 2006. View at Google Scholar
  8. K. Li, P. Chen, and H. Wang, “Intelligent diagnosis method for rotating machinery using wavelet transform and ant colony optimization,” IEEE Sensors Journal, vol. 12, no. 7, pp. 2474–2484, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Junsheng, Y. Dejie, and Y. Yu, “Application of an impulse response wavelet to fault diagnosis of rolling bearings,” Mechanical Systems and Signal Processing, vol. 21, no. 2, pp. 920–929, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Fan, M. Liang, T. H. Yeap, and B. Kind, “A joint wavelet lifting and independent component analysis approach to fault detection of rolling element bearings,” Smart Materials and Structures, vol. 16, no. 5, pp. 1973–1987, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. S. E. Khadem and M. Rezaee, “Development of vibration signature analysis using multiwavelet systems,” Journal of Sound and Vibration, vol. 261, no. 4, pp. 613–633, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Yuan, Z. J. He, and Y. Y. Zi, “Separation and extraction of electromechanical equipment compound faults using lifting multiwavelets,” Journal of Mechanical Engineering, vol. 46, no. 1, pp. 79–85, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Jiang, C. Li, and H. Li, “An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis,” Mechanical Systems and Signal Processing, vol. 36, no. 2, pp. 225–239, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Sun, Y. Zi, J. Yuan, Z. He, K. Li, and X. Chen, “Undecimated multiwavelet and Hilbert-Huang time-frequency analysis and its application in the incipient fault diagnosis of planetary gearboxes,” Journal of Mechanical Engineering, vol. 49, no. 3, pp. 56–62, 2013. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948, December 1995. View at Scopus
  16. P. Shao and Z. J. Wu, “Rosenbrock function optimization based on improved particle swarm optimization algorithm,” Computer Science, vol. 40, no. 9, pp. 194–197, 2013. View at Google Scholar
  17. C. Akjiratikarl, P. Yenradee, and P. R. Drake, “PSO-based algorithm for home care worker scheduling in the UK,” Computers and Industrial Engineering, vol. 53, no. 4, pp. 559–583, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Pang, K. Wang, C. Zhou, and L. Dong, “Fuzzy discrete particle swarm optimization for solving traveling salesman problem,” in Proceedings of the 4th International Conference on Computer and Information Technology (CIT '04), pp. 796–800, September 2004. View at Scopus
  19. M. Ma and L. Zhang, “Particle swarm optimization algorithm design for fuzzy neural network,” Fuzzy Information and Engineering Advances in Soft Computing, vol. 40, pp. 309–314, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. Q. Shen, W. M. Shi, X. P. Yang, and B. X. Ye, “Particle swarm algorithm trained neural network for QSAR studies of inhibitors of platelet-derived growth factor receptor phosphorylation,” European Journal of Pharmaceutical Sciences, vol. 28, no. 5, pp. 369–376, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. M. G. H. Omran, A. P. Engelbrecht, and A. Salman, “Dynamic clustering using particle swarm optimization with application in unsupervised image classification,” Proceedings of World Academy of Science Engineering and Thechnology, vol. 9, pp. 199–204, 2005. View at Google Scholar
  22. Y. Kao, E. Zahara, and I. Kao, “A hybridized approach to data clustering,” Expert Systems with Applications, vol. 34, no. 3, pp. 1754–1762, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. T. Niknam and B. Amiri, “An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis,” Applied Soft Computing, vol. 10, no. 1, pp. 183–197, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. C. D. Bocaniala and J. Sa da Costa, “Tuning the parameters of a fuzzy classifier for fault diagnosis. Particle swarm optimization versus genetic algorithms,” in Proceedings of the 1st International Conference on Informatics in Control, Automation and Robotics (ICINCO '04), pp. 157–162, Setubal, Portugal, August 2004.
  25. H. X. Pan, J. Y. Huang, H. W. Mao, and Z. W. Liu, “Fault characteristic extracting based on PSO,” in Proceedings of the 12th International Conference on Intelligent Engineering Systems (INES '08), pp. 139–144, February 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. Q. F. Ma, Gearbox fault diagnosis research based on particle swarm optimization neural network [M.S. thesis], North university of China, Taiyuan, China, 2006.
  27. X. F. Wang, J. Qiu, and G. J. Liu, “Discrete particle swarm optimization algorithm for gearbox fault symptom selection,” Journal of Aerospace Power, vol. 20, no. 6, pp. 969–972, 2005. View at Google Scholar · View at Scopus
  28. J. Y. Tham, L. Shen, S. L. Lee, and H. H. Tan, “A general approach for analysis and application of discrete multiwavelet transforms,” IEEE Transactions on Signal Processing, vol. 48, no. 2, pp. 457–464, 2000. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  29. J. S. Geronimo, D. P. Hardin, and P. R. Massopust, “Fractal functions and wavelet expansions based on several scaling functions,” Journal of Approximation Theory, vol. 78, no. 3, pp. 373–401, 1994. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  30. X. G. Xia, J. S. Geronimo, D. P. Hardin, and B. W. Suter, “Design of prefilters for discrete multiwavelet transforms,” IEEE Transactions on Signal Processing, vol. 44, no. 1, pp. 25–35, 1996. View at Publisher · View at Google Scholar · View at Scopus
  31. V. Strela, P. N. Heller, G. Strang, P. Topiwala, and C. Heil, “The application of multiwavelet filterbanks to image processing,” IEEE Transactions on Image Processing, vol. 8, no. 4, pp. 548–563, 1999. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Matuyama, “Diagnosis algorithm,” Journal of JSPEl, vol. 75, no. 3, pp. 35–37, 1991. View at Google Scholar
  33. P. Chen, T. Toyota, and Y. Sasaki, “Fuzzy diagnosis and fuzzy navigation for plant inspection and diagnosis robot,” in Proceedings of the IEEE International Conference on Fuzzy Systems (IEEE/IFES ’95), pp. 185–193, Yokohama, Japan, March 1995. View at Scopus
  34. K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press, San Diego, Calif, USA, 1972.
  35. Y. Shi and R. C. Eberhart, “Empirical study of particle swarm optimization,” in Proceedings of the Congress on Evolutionary Computation, pp. 1945–1949, Washington, DC, USA, 1999.
  36. Y. H. Shi and R. C. Eberhart, “A modified particle swarm optimizer,” in Proceedings of the IEEE International Conference on Evolutionary Computation (ICEC '98), pp. 69–73, Anchorage, Alaska, USA, May 1998. View at Scopus