Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2014, Article ID 157893, 11 pages
http://dx.doi.org/10.1155/2014/157893
Research Article

An Adaptive Total Generalized Variation Model with Augmented Lagrangian Method for Image Denoising

1Unit 302, Xi’an Institute of High-Tech, Xi’an 710025, China
2Unit 303, Xi’an Institute of High-Tech, Xi’an 710025, China

Received 3 March 2014; Revised 20 May 2014; Accepted 25 May 2014; Published 10 July 2014

Academic Editor: Fatih Yaman

Copyright © 2014 Chuan He et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D: Nonlinear Phenomena, vol. 60, no. 1–4, pp. 259–268, 1992. View at Google Scholar · View at Scopus
  2. T. Chan, S. Esedoglu, F. Park, and A. Yip, “Recent developments in total variation image restoration,” in Mathematical Models of Computer Vision, Springer, New York, NY, USA, 2005. View at Google Scholar
  3. Y. L. You and M. Kaveh, “Fourth-order partial differential equations for noise removal,” IEEE Transactions on Image Processing, vol. 9, no. 10, pp. 1723–1730, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Lysaker, A. Lundervold, and X.-C. Tai, “Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time,” IEEE Transactions on Image Processing, vol. 12, no. 12, pp. 1579–1589, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. T. F. Chan, S. Esedoglu, and F. Park, “A fourth order dual method for staircase reduction in texture extraction and image restoration problems,” in Proceedings of the 17th IEEE International Conference on Image Processing (ICIP '10), pp. 4137–4140, Los Angeles, Calif, USA, September 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. R. Hajiaboli, “An anisotropic fourth-order diffusion filter for image noise removal,” International Journal of Computer Vision, vol. 92, no. 2, pp. 177–191, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Liu and Z. Xiang, “Image restoration combining the second-order and fourth-order PDEs,” Mathematical Problems in Engineering, vol. 2013, Article ID 743891, 7 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating minimization algorithm for total variation image reconstruction,” SIAM Journal on Imaging Sciences, vol. 1, no. 3, pp. 248–272, 2008. View at Google Scholar
  9. N. B. Brás, J. Bioucas-Dias, R. C. Martins, and A. C. Serra, “An alternating direction algorithm for total variation reconstruction of distributed parameters,” IEEE Transactions on Image Processing, vol. 21, no. 6, pp. 3004–3016, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. C. He, C. Hu, W. Zhang, B. Shi, and X. Hu, “Fast total-variation image deconvolution with adaptive parameter estimation via split Bregman method,” Mathematical Problems in Engineering, vol. 2014, Article ID 617026, 9 pages, 2014. View at Publisher · View at Google Scholar
  11. T. Goldstein, B. O’Donoghue, S. Setzer, and R. Baraniuk, “Fast alternating direction optimization methods,” UCLA CAM Report, 2012. View at Google Scholar
  12. T. Chan, A. Marquina, and P. Mulet, “High-order total variation-based image restoration,” SIAM Journal on Scientific Computing, vol. 22, no. 2, pp. 503–516, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. O. Scherzer, “Denoising with higher order derivatives of bounded variation and an application to parameter estimation,” Computing, vol. 60, no. 1, pp. 1–27, 1998. View at Google Scholar · View at Scopus
  14. A. Chambolle and P.-L. Lions, “Image recovery via total variation minimization and related problems,” Numerische Mathematik, vol. 76, no. 2, pp. 167–188, 1997. View at Google Scholar · View at Scopus
  15. G. Dal Maso, I. Fonseca, G. Leoni, and M. Morini, “A higher order model for image restoration: the one-dimensional case,” SIAM Journal on Mathematical Analysis, vol. 40, pp. 2351–2391, 2009. View at Publisher · View at Google Scholar
  16. B. Shi, Z. F. Pang, and Y. F. Yang, “Image restoration based on the hybrid total-variation-type model,” Abstract and Applied Analysis, vol. 2012, Article ID 376802, 30 pages, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Bredies, K. Kunisch, and T. Pock, “Total generalized variation,” SIAM Journal on Imaging Sciences, vol. 3, no. 3, pp. 492–526, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. Yu. Nesterov, “A method for solving a convex programming problem with convergence rate O(1/k2),” Soviet Mathematics Doklady, vol. 27, pp. 372–376, 1983. View at Google Scholar
  19. R. Glowinski and P. Le Tallec, Augmented Lagrangians and Operator-Splitting Methods in Nonlinear Mechanics, Studies in Applied Mathematics 9, SIAM, Philadelphia, Pa, USA, 1989.
  20. S. Xie and S. Rahardja, “Alternating direction method for balanced image restoration,” IEEE Transactions on Image Processing, vol. 21, no. 11, pp. 4557–4567, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. W. Deng and W. Yin, “On the global and linear convergence of the generalized alternating direction method of multipliers,” UCLA CAM Report Cam 12-52, 2012. View at Google Scholar
  22. W. Guo, J. Qin, and W. Yin, “A new detail-preserving regularity scheme,” UCLA CAM Report cam13-04, 2013. View at Google Scholar
  23. J. Duran, B. Coll, and C. Sbert, “Chambolle's pojection algorithm for total variation denoising,” Image Processing on Line, vol. 3, pp. 311–331, 2013. View at Publisher · View at Google Scholar
  24. P. Getreuer, “Rudin-Osher-Fatemi total variation denoising using split Bregman,” Image Processing on Line, vol. 2, pp. 74–95, 2012. View at Publisher · View at Google Scholar
  25. C. Wu and X.-C. Tai, “Augmented lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models,” SIAM Journal on Imaging Sciences, vol. 3, no. 3, pp. 300–339, 2010. View at Publisher · View at Google Scholar · View at Scopus