Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2014 (2014), Article ID 187345, 11 pages
Research Article

Direct Self-Repairing Control for Quadrotor Helicopter Attitude Systems

College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received 12 December 2013; Accepted 28 February 2014; Published 31 March 2014

Academic Editor: Rongni Yang

Copyright © 2014 Huiliao Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A quadrotor helicopter with uncertain actuator faults, such as loss of effectiveness and lock-in-place, is studied in this paper. An adaptive fuzzy sliding mode controller based on direct self-repairing control is designed for such nonlinear system to track the desired output signal, when any actuator of this quadrotor helicopter is loss of effectiveness or stuck at some place. Moreover, using the Lyapunov stability theory, the stability of the whole system and the convergence of the tracking error can be guaranteed. Finally, the availability of the proposed method is verified by simulation on 3-DOF hover to ensure that the system performance under faulty conditions can be quickly recovered to its normal level. And this proposed method is also proved to be better than that of LQR through simulation.