Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2014, Article ID 307371, 7 pages
http://dx.doi.org/10.1155/2014/307371
Research Article

A New Approach for Solving Fractional Partial Differential Equations in the Sense of the Modified Riemann-Liouville Derivative

School of Science, Shandong University of Technology, Zibo, Shandong 255049, China

Received 26 June 2014; Accepted 2 September 2014; Published 11 November 2014

Academic Editor: Alessandro Palmeri

Copyright © 2014 Bin Zheng and Qinghua Feng. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Taghizadeh, M. Mirzazadeh, M. Rahimian, and M. Akbari, “Application of the simplest equation method to some time-fractional partial differential equations,” Ain Shams Engineering Journal, vol. 4, no. 4, pp. 897–902, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. B. Zheng, “Exp-function method for solving fractional partial differential equations,” The Scientific World Journal, vol. 2013, Article ID 465723, 8 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. J. He, “A new approach to nonlinear partial differential equations,” Communications in Nonlinear Science and Numerical Simulation, vol. 2, no. 4, pp. 230–235, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  4. G. C. Wu, “A fractional variational iteration method for solving fractional nonlinear differential equations,” Computers & Mathematics with Applications, vol. 61, no. 8, pp. 2186–2190, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  5. S. Guo and L. Mei, “The fractional variational iteration method using He's polynomials,” Physics Letters A, vol. 375, no. 3, pp. 309–313, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  6. G. Wu and E. W. M. Lee, “Fractional variational iteration method and its application,” Physics Letters A, vol. 374, no. 25, pp. 2506–2509, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  7. A. M. A. El-Sayed and M. Gaber, “The Adomian decomposition method for solving partial differential equations of fractal order in finite domains,” Physics Letters A, vol. 359, no. 3, pp. 175–182, 2006. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  8. A. M. A. El-Sayed, S. H. Behiry, and W. E. Raslan, “Adomian's decomposition method for solving an intermediate fractional advection-dispersion equation,” Computers & Mathematics with Applications, vol. 59, no. 5, pp. 1759–1765, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  9. S. Zhang and H. Q. Zhang, “Fractional sub-equation method and its applications to nonlinear fractional PDEs,” Physics Letters A, vol. 375, no. 7, pp. 1069–1073, 2011. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  10. S. Guo, L. Mei, Y. Li, and Y. Sun, “The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics,” Physics Letters A, vol. 376, no. 4, pp. 407–411, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  11. B. Lu, “Bäcklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations,” Physics Letters A, vol. 376, no. 28-29, pp. 2045–2048, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  12. B. Tang, Y. N. He, L. L. Wei, and X. Zhang, “A generalized fractional sub-equation method for fractional differential equations with variable coefficients,” Physics Letters A, vol. 376, no. 38-39, pp. 2588–2590, 2012. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  13. S. Guo, L. Mei, and Y. Li, “Fractional variational homotopy perturbation iteration method and its application to a fractional diffusion equation,” Applied Mathematics and Computation, vol. 219, no. 11, pp. 5909–5917, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  14. J. H. He, “Homotopy perturbation technique,” Computer Methods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp. 257–262, 1999. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  15. J.-H. He, “A coupling method of a homotopy technique and a perturbation technique for non-linear problems,” International Journal of Non-Linear Mechanics, vol. 35, no. 1, pp. 37–43, 2000. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  16. G. Jumarie, “Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results,” Computers & Mathematics with Applications, vol. 51, no. 9-10, pp. 1367–1376, 2006. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  17. G. Jumarie, “Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions,” Applied Mathematics Letters, vol. 22, no. 3, pp. 378–385, 2009. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  18. G. Jumarie, “Cauchy's integral formula via the modified Riemann-Liouville derivative for analytic functions of fractional order,” Applied Mathematics Letters, vol. 23, no. 12, pp. 1444–1450, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  19. G. Jumarie, “Fractional partial differential equations and modified Riemann-Liouville derivative new methods for solution,” Journal of Applied Mathematics & Computing, vol. 24, no. 1-2, pp. 31–48, 2007. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  20. F. Meng, “A new approach for solving fractional partial differential equations,” Journal of Applied Mathematics, vol. 2013, Article ID 256823, 5 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  21. B. Zheng and C. Wen, “Exact solutions for fractional partial differential equations by a new fractional sub-equation method,” Advances in Difference Equations, vol. 199, pp. 1–12, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus