Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2014 (2014), Article ID 307637, 6 pages
Research Article

A Lattice-Based Identity-Based Proxy Blind Signature Scheme in the Standard Model

Institute of Information Engineering and Huanghe Science and Technology College, Zhengzhou 450063, China

Received 25 April 2014; Revised 15 August 2014; Accepted 17 August 2014; Published 25 September 2014

Academic Editor: Yan-Wu Wang

Copyright © 2014 Lili Zhang and Yanqin Ma. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A proxy blind signature scheme is a special form of blind signature which allowed a designated person called proxy signer to sign on behalf of original signers without knowing the content of the message. It combines the advantages of proxy signature and blind signature. Up to date, most proxy blind signature schemes rely on hard number theory problems, discrete logarithm, and bilinear pairings. Unfortunately, the above underlying number theory problems will be solvable in the postquantum era. Lattice-based cryptography is enjoying great interest these days, due to implementation simplicity and provable security reductions. Moreover, lattice-based cryptography is believed to be hard even for quantum computers. In this paper, we present a new identity-based proxy blind signature scheme from lattices without random oracles. The new scheme is proven to be strongly unforgeable under the standard hardness assumption of the short integer solution problem (SIS) and the inhomogeneous small integer solution problem (ISIS). Furthermore, the secret key size and the signature length of our scheme are invariant and much shorter than those of the previous lattice-based proxy blind signature schemes. To the best of our knowledge, our construction is the first short lattice-based identity-based proxy blind signature scheme in the standard model.