Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2014, Article ID 369360, 18 pages
http://dx.doi.org/10.1155/2014/369360
Research Article

Analysis of a Delayed Internet Worm Propagation Model with Impulsive Quarantine Strategy

1Key Laboratory of Medical Image Computing, Northeastern University, Ministry of Education, Shenyang 110819, China
2College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
3Software College, Northeastern University, Shenyang 110819, China

Received 9 December 2013; Accepted 31 March 2014; Published 28 April 2014

Academic Editor: Hamid Reza Karimi

Copyright © 2014 Yu Yao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Qing and W. Wen, “A survey and trends on internet worms,” Computers and Security, vol. 24, no. 4, pp. 334–346, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. R. M. Anderson and R. M. May, Infected Diseases of Human, Dynamics and Control, Oxford University Press, Oxford, UK, 1992.
  3. Q. Zhu, X. Yang, and J. Ren, “Modeling and analysis of the spread of computer virus,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 12, pp. 5117–5124, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  4. B. K. Mishra and S. K. Pandey, “Fuzzy epidemic model for the transmission of worms in computer network,” Nonlinear Analysis: Real World Applications, vol. 11, no. 5, pp. 4335–4341, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. B. K. Mishra and S. K. Pandey, “Dynamic model of worms with vertical transmission in computer network,” Applied Mathematics and Computation, vol. 217, no. 21, pp. 8438–8446, 2011. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  6. J. Ren, X. Yang, Q. Zhu, L.-X. Yang, and C. Zhang, “A novel computer virus model and its dynamics,” Nonlinear Analysis: Real World Applications, vol. 13, no. 1, pp. 376–384, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  7. S. Yin, S. X. Ding, A. Haghani, H. Hao, and P. Zhang, “A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process,” Journal of Process Control, vol. 22, no. 9, pp. 1567–1581, 2012. View at Publisher · View at Google Scholar
  8. S. Yin, S. X. Ding, A. H. A. Sari, and H. Hao, “Data-driven monitoring for stochastic systems and its application on batch process,” International Journal of Systems Science, vol. 44, no. 7, pp. 1366–1376, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. S. Yin, L. Hao, and S. Ding, “Real-time implementation of fault-tolerant control systems with performance optimization,” IEEE Transactions on Industrial Electronics, vol. 61, no. 5, pp. 2402–2411, 2013. View at Google Scholar
  10. L.-X. Yang, X. Yang, Q. Zhu, and L. Wen, “A computer virus model with graded cure rates,” Nonlinear Analysis: Real World Applications, vol. 14, no. 1, pp. 414–422, 2013. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  11. C. C. Zou, W. Gong, and D. Towsley, “Code red worm propagation modeling and analysis,” in Proceedings of the 9th ACM Conference on Computer and Communications Security, pp. 138–147, ACM, November 2002. View at Scopus
  12. C. C. Zou, W. Gong, and D. Towsley, “Worm propagation modeling and analysis under dynamic quarantine defense,” in Proceedings of the ACM Workshop on Rapid Malcode (WORM '03), pp. 51–60, ACM, October 2003. View at Scopus
  13. Y. Yao, X.-W. Xie, H. Guo, G. Yu, F.-X. Gao, and X.-J. Tong, “Hopf bifurcation in an Internet worm propagation model with time delay in quarantine,” Mathematical and Computer Modelling, vol. 57, no. 11-12, pp. 2635–2646, 2013. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Yao, W. Xiang, A. Qu, G. Yu, and F. Gao, “Hopf bifurcation in an SEIDQV worm propagation model with quarantine strategy,” Discrete Dynamics in Nature and Society, vol. 2012, Article ID 304868, 18 pages, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  15. Y. Yao, L. Guo, H. Guo, G. Yu, F.-X. Gao, and X.-J. Tong, “Pulse quarantine strategy of internet worm propagation: modeling and analysis,” Computers and Electrical Engineering, vol. 38, no. 5, pp. 1047–1061, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Wang, Y. Zhang, C. Wang, J. Ma, and S. Moon, “Stability analysis of a SEIQV epidemic model for rapid spreading worms,” Computers and Security, vol. 29, no. 4, pp. 410–418, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. H.-F. Huo and Z.-P. Ma, “Dynamics of a delayed epidemic model with non-monotonic incidence rate,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 2, pp. 459–468, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. C. Zhang, W. Liu, J. Xiao, and Y. Zhao, “Hopf bifurcation of an improved SLBS model under the influence of latent period,” Mathematical Problems in Engineering, vol. 2013, Article ID 196214, 10 pages, 2013. View at Publisher · View at Google Scholar
  19. Z. Zhang and H. Yang, “Stability and Hopf bifurcation in a delayed SEIRS worm model in computer network,” Mathematical Problems in Engineering, vol. 2013, Article ID 319174, 9 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  20. J. Ren, X. Yang, L.-X. Yang, Y. Xu, and F. Yang, “A delayed computer virus propagation model and its dynamics,” Chaos, Solitons & Fractals, vol. 45, no. 1, pp. 74–79, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  21. C.-H. Li, C.-C. Tsai, and S.-Y. Yang, “Analysis of the permanence of an SIR epidemic model with logistic process and distributed time delay,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 9, pp. 3696–3707, 2012. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  22. B. D. Hassard, N. D. Kazarinoff, and Y. H. Wan, Theory and Applications of Hopf Bifurcation, vol. 41 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, Mass, USA, 1981. View at MathSciNet
  23. T. Dong, X. Liao, and H. Li, “Stability and Hopf bifurcation in a computer virus model with multistate antivirus,” Abstract and Applied Analysis, vol. 2012, Article ID 841987, 16 pages, 2012. View at Publisher · View at Google Scholar
  24. D. D. Bainov and P. S. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, Longman, Harlow, UK, 1993.
  25. V. Lakshmikantham, D. D. Baĭnov, and P. S. Simeonov, Theory of Impulsive Differential Equations, vol. 6 of Series in Modern Applied Mathematics, World Scientific Publishing, Teaneck, NJ, USA, 1989. View at MathSciNet
  26. Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, vol. 191 of Mathematics in Science and Engineering, Academic Press, Boston, Mass, USA, 1993. View at MathSciNet
  27. S. Gao, Z. Teng, and D. Xie, “The effects of pulse vaccination on SEIR model with two time delays,” Applied Mathematics and Computation, vol. 201, no. 1-2, pp. 282–292, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet