Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2014 (2014), Article ID 383671, 16 pages
Research Article

Multiple Naïve Bayes Classifiers Ensemble for Traffic Incident Detection

1Jiangsu Key Laboratory of Urban ITS, Southeast University, Nanjing 210096, China
2Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Nanjing 210096, China
3Department of Civil & Environment Engineering, National University of Singapore, Singapore 119078

Received 16 January 2014; Revised 26 March 2014; Accepted 27 March 2014; Published 28 April 2014

Academic Editor: Erik Cuevas

Copyright © 2014 Qingchao Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This study presents the applicability of the Naïve Bayes classifier ensemble for traffic incident detection. The standard Naive Bayes (NB) has been applied to traffic incident detection and has achieved good results. However, the detection result of the practically implemented NB depends on the choice of the optimal threshold, which is determined mathematically by using Bayesian concepts in the incident-detection process. To avoid the burden of choosing the optimal threshold and tuning the parameters and, furthermore, to improve the limited classification performance of the NB and to enhance the detection performance, we propose an NB classifier ensemble for incident detection. In addition, we also propose to combine the Naïve Bayes and decision tree (NBTree) to detect incidents. In this paper, we discuss extensive experiments that were performed to evaluate the performances of three algorithms: standard NB, NB ensemble, and NBTree. The experimental results indicate that the performances of five rules of the NB classifier ensemble are significantly better than those of standard NB and slightly better than those of NBTree in terms of some indicators. More importantly, the performances of the NB classifier ensemble are very stable.