Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2014, Article ID 391942, 7 pages
http://dx.doi.org/10.1155/2014/391942
Research Article

An Inversely Designed Model for Calculating Pull-In Limit and Position of Electrostatic Fixed-Fixed Beam Actuators

Department of Electrical-Electronics Engineering, Mersin University, 33343, Mersin, Turkey

Received 11 April 2014; Revised 20 July 2014; Accepted 20 July 2014; Published 20 August 2014

Academic Editor: Fatih Yaman

Copyright © 2014 Cevher Ak and Ali Yildiz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. L. Roy, A. Bhattacharya, R. R. Chaudhuri, and T. K. Bhattacharyya, “Analysis of the pull-in phenomenon in microelectromechanical varactors,” in Proceedings of the 25th International Conference on VLSI Design, pp. 185–190, Hyderabad, India, January 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. H.-L. Chau and K. D. Wise, “Ultraminiature solid-state pressure sensor for a cardiovascular catheter,” IEEE Transactions on Electron Devices, vol. 35, no. 12, pp. 2355–2362, 1988. View at Publisher · View at Google Scholar · View at Scopus
  3. W. Zhang, R. Baskaran, and K. L. Turner, “Effect of cubic nonlinearity on auto-parametrically amplified resonant MEMS mass sensor,” Sensors and Actuators A, vol. 102, no. 1-2, pp. 139–150, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. S. P. Pacheco, L. P. B. Katehi, and C. T.-C. Nguyen, “Design of low actuation voltage RF MEMS switch,” in Proceedings of the IEEE MTT-S International Microwave Symposium Digest, pp. 165–168, Boston, Mass, USA, June 2000. View at Scopus
  5. H.-H. Yang, O. L. Jeong, and J.-B. Yoon, “Maneuvering pull-in voltage of an electrostatic micro-switch by introducing a pre-charged electrode,” in Proceedings of the IEEE International Electron Devices Meeting (IEDM '07), pp. 439–442, Washington, DC, USA, December 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Shen, J. Park, J. Ajitsaria, S. Choe, H. C. Wikle, and D. Kim, “The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting,” Journal of Micromechanics and Microengineering, vol. 18, no. 5, Article ID 055017, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Mohanty, D. A. Harrington, and M. L. Roukes, “Measurement of small forces in micron-sized resonators,” Physica B: Condensed Matter, vol. 284–288, part 2, pp. 2143–2144, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Mojahedi, M. Moghimi Zand, and M. T. Ahmadian, “Static pull-in analysis of electrostatically actuated microbeams using homotopy perturbation method,” Applied Mathematical Modelling, vol. 34, no. 4, pp. 1032–1041, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  9. G. N. Nielson and G. Barbastathis, “Dynamic pull-in of parallel-plate and torsional electrostatic MEMS actuators,” Journal of Microelectromechanical Systems, vol. 15, no. 4, pp. 811–821, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Hu and G. Lee, “A closed form solution for the pull-in voltage of the micro bridge,” Tamkang Journal of Science and Engineering, vol. 10, no. 2, pp. 147–150, 2007. View at Google Scholar · View at Scopus
  11. L. Mol, E. Cretu, L. A. Rocha, and R. F. Wolffenbuttel, “Full-gap positioning of parallel-plate electrostatic MEMS using on-off control,” in Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE '07), pp. 1464–1468, Vigo, Spain, June 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Chowdhury, M. Ahmadi, and W. C. Miller, “Pull-in voltage study of electrostatically actuated fixed-fixed beams using a VLSI on-chip interconnect capacitance model,” Journal of Microelectromechanical Systems, vol. 15, no. 3, pp. 639–651, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. K. O. Owusu and F. L. Lewis, “Solving the “pull-in” instability problem of electrostatic microactuators using nonlinear control techniques,” in Proceedings of the 2nd IEEE International Conference on Nano/Micro Engineered and Molecular Systems (IEEE NEMS '07), pp. 1190–1195, Bangkok, Thailand, January 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. C. Hu, C. M. Chang, and S. C. Huang, “Some design considerations on the electrostatically actuated microstructures,” Sensors and Actuators A: Physical, vol. 112, no. 1, pp. 155–161, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Sadeghian, G. Rezazadeh, and P. M. Osterberg, “Application of the generalized differential quadrature method to the study of pull-in phenomena of MEMS switches,” Journal of Microelectromechanical Systems, vol. 16, no. 6, pp. 1334–1340, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. H. C. Nathanson, W. E. Newell, R. A. Wickstrom, and J. R. Davis Jr., “The resonant gate transistor,” IEEE Transaction of Electron Devices, vol. 14, no. 3, pp. 117–133, 1967. View at Publisher · View at Google Scholar
  17. P. M. Osterberg and S. D. Senturia, “M-test: a test chip for MEMS material property measurement using electrostatically actuated test structures,” Journal of Microelectromechanical Systems, vol. 6, no. 2, pp. 107–118, 1997. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Pamidighantam, R. Puers, K. Baert, and H. A. C. Tilmans, “Pull-in voltage analysis of electrostatically actuated beam structures with fixed-fixed and fixed-free end conditions,” Journal of Micromechanics and Microengineering, vol. 12, no. 4, pp. 458–464, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. C. O'Mahony, M. Hill, R. Duane, and A. Mathewson, “Analysis of electromechanical boundary effects on the pull-in of micromachined fixed-fixed beams,” Journal of Micromechanics and Microengineering, vol. 13, no. 4, pp. S75–S80, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. H. A. C. Tilmans and R. Legtenberg, “Electrostatically driven vacuum-encapsulated polysilicon resonators. Part II. Theory and performance,” Sensors and Actuators A, vol. 45, no. 1, pp. 67–84, 1994. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Yildiz, C. Ak, and H. Canbolat, “New approach to pull-in limit and position control,” in Electrostatics, chapter 6, pp. 139–150, In-Teh, Rijeka, Croatia, 2012. View at Google Scholar
  22. C. Ak, Dynamic position control of electrostatic actuators [M.S. thesis], Fen Bilimleri Enstitusu, Mersin University, Mersin, Turkey, 2008.
  23. C. Ak and A. Yildiz, “Development of a novel analytical model for calculating pull-in limit and voltage value for a desired position of electrostatic cantilever free tip,” Pensee Journal, vol. 76, pp. 360–373, 2014. View at Google Scholar
  24. S. C. Saha, U. Hanke, G. U. Jensen, and T. Saether, “Modeling of spring constant and pull-down voltage of non uniform RF MEMS cantilever,” in Proceedings of the IEEE International Behavioral Modeling and Simulation Workshop, pp. 56–60, September 2006. View at Publisher · View at Google Scholar · View at Scopus