Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2014, Article ID 479197, 6 pages
http://dx.doi.org/10.1155/2014/479197
Research Article

Solving Parameter Identification of Nonlinear Problems by Artificial Bee Colony Algorithm

1Department of Civil Engineering, University of Tabriz, Tabriz, Iran
2Department of Civil Engineering, Azad University of Mahabad, Mahabad, Iran

Received 19 February 2014; Revised 7 June 2014; Accepted 11 June 2014; Published 13 July 2014

Academic Editor: Fei Kang

Copyright © 2014 S. Talatahari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Talatahari, A. Kaveh, and N. Mohajer Rahbari, “Parameter identification of Bouc-Wen model for MR fluid dampers using adaptive charged system search optimization,” Journal of Mechanical Science and Technology, vol. 26, no. 8, pp. 2523–2534, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Fontan, A. Ndiaye, D. Breysse, F. Bos, and C. Fernandez, “Soil-structure interaction: parameters identification using particle swarm optimization,” Computers and Structures, vol. 89, no. 17-18, pp. 1602–1614, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Bouc, “Forced vibration of mechanical systems with hysteresis,” in Proceedings of the 4th Conference on Non-Linear Oscillation, Prague, Czech Republic, 1967.
  4. Y. Wen, “Method for random vibration of hysteretic systems,” ASCE Journal of Engineering Mechanics Division, vol. 102, no. 2, pp. 249–263, 1976. View at Google Scholar · View at Scopus
  5. M. Yar and J. K. Hammond, “Parameter estimation for hysteretic systems,” Journal of Sound and Vibration, vol. 117, no. 1, pp. 161–172, 1987. View at Publisher · View at Google Scholar · View at Scopus
  6. S. K. Kunnath, J. B. Mander, and L. Fang, “Parameter identification for degrading and pinched hysteretic structural concrete systems,” Engineering Structures, vol. 19, no. 3, pp. 224–232, 1997. View at Publisher · View at Google Scholar · View at Scopus
  7. R. H. Sues, S. T. Mau, and Y.-K. Wen, “System identification of degrading hysteretic restoring forces,” Journal of Engineering Mechanics, vol. 114, no. 5, pp. 833–846, 1988. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Zhang, G. C. Foliente, Y. Yang, and F. Ma, “Parameter identification of inelastic structures under dynamic loads,” Earthquake Engineering & Structural Dynamics, vol. 31, no. 5, pp. 1113–1130, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Q. Ni, J. M. Ko, and C. W. Wong, “Identification of non-linear hysteretic isolators from periodic vibration tests,” Journal of Sound and Vibration, vol. 217, no. 4, pp. 737–756, 1998. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Jeen-Shang and Z. Yigong, “Nonlinear structural identification using extended kalman filter,” Computers & Structures, vol. 52, no. 4, pp. 757–764, 1994. View at Publisher · View at Google Scholar · View at Scopus
  11. N. M. Kwok, Q. P. Ha, M. T. Nguyen, J. Li, and B. Samali, “Bouc-Wen model parameter identification for a MR fluid damper using computationally efficient GA,” ISA Transactions, vol. 46, no. 2, pp. 167–179, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. J.-L. Ha, Y.-S. Kung, R.-F. Fung, and S.-C. Hsien, “A comparison of fitness functions for the identification of a piezoelectric hysteretic actuator based on the real-coded genetic algorithm,” Sensors and Actuators A: Physical, vol. 132, no. 2, pp. 643–650, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Kyprianou, K. Worden, and M. Panet, “Identification of hysteretic systems using the differential evolution algorithm,” Journal of Sound and Vibration, vol. 248, no. 2, pp. 289–314, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. F. Ma, C. H. Ng, and N. Ajavakom, “On system identification and response prediction of degrading structures,” Structural Control and Health Monitoring, vol. 13, no. 1, pp. 347–364, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J.-L. Ha, R.-F. Fung, and C.-S. Yang, “Hysteresis identification and dynamic responses of the impact drive mechanism,” Journal of Sound and Vibration, vol. 283, no. 3–5, pp. 943–956, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. A. E. Charalampakis and V. K. Koumousis, “Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm,” Journal of Sound and Vibration, vol. 314, no. 3–5, pp. 571–585, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. A. E. Charalampakis and C. K. Dimou, “Identification of Bouc-Wen hysteretic systems using particle swarm optimization,” Computers & Structures, vol. 88, no. 21-22, pp. 1197–1205, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Liu, H. Liu, J. Teng, and T. Cao, “Parameters identification for smart dampers based on simulated annealing and genetic algorithm,” in Proceedings of the IEEE International Conference on Mechatronics and Automation (ICMA '06), pp. 2199–2204, Luoyang, China, June 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Talatahari, N. M. Rahbari, and A. Kaveh, “A new hybrid optimization algorithm for recognition of hysteretic non-linear systems,” KSCE Journal of Civil Engineering, vol. 17, no. 5, pp. 1099–1108, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. B. Basturk and D. Karaboga, “An artificial bee colony (ABC) algorithm for numerical function optimization,” in Proceedings of the IEEE Swarm Intelligence Symposium, Indianapolis, Ind, USA, 2006.
  21. D. Karaboga and B. Basturk, “Artificial Bee Colony (ABC) optimization algorithm for solving constrained optimization problems,” in Foundations of Fuzzy Logic and Soft Computing, vol. 4529 of Lecture Notes in Computer Science, pp. 789–798, Springer, Berlin, Germany, 2007. View at Publisher · View at Google Scholar
  22. Y. Robert-Nicoud, B. Raphael, O. Burdet, and I. F. C. Smith, “Model identification of bridges using measurement data,” Computer-Aided Civil and Infrastructure Engineering, vol. 20, no. 2, pp. 118–131, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. F. N. Catbas, M. Susoy, and D. M. Frangopol, “Structural health monitoring and reliability estimation: long span truss bridge application with environmental monitoring data,” Engineering Structures, vol. 30, no. 9, pp. 2347–2359, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. H. B. Zhao and S. Yin, “Geomechanical parameters identification by particle swarm optimization and support vector machine,” Applied Mathematical Modelling, vol. 33, no. 10, pp. 3997–4012, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Zhang, D. Gallipoli, and C. E. Augarde, “Simulation-based calibration of geotechnical parameters using parallel hybrid moving boundary particle swarm optimization,” Computers and Geotechnics, vol. 36, no. 4, pp. 604–615, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Meier, W. Schaedler, L. Borgatti, A. Corsini, and T. Schanz, “Inverse parameter identification technique using PSO algorithm applied to geotechnical modeling,” Journal of Artificial Evolution and Applications, vol. 2008, Article ID 574613, 14 pages, 2008. View at Publisher · View at Google Scholar
  27. S. Levasseur, Y. Malécot, M. Boulon, and E. Flavigny, “Soil parameter identification using a genetic algorithm,” International Journal for Numerical and Analytical Methods in Geomechanics, vol. 32, no. 2, pp. 189–213, 2008. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus
  28. P. Schmitt and F. Schlosser, “La méthode observationnelle: du suivi géotechnique au dimensionnement interactif,” Travaux, Sols et Fondations, vol. 844, pp. 99–106, 2007. View at Google Scholar
  29. H.-J. Jung, B. F. Spencer Jr., and I.-W. Lee, “Control of seismically excited cable-stayed bridge employing magnetorheological fluid dampers,” Journal of Structural Engineering, vol. 129, no. 7, pp. 873–883, 2003. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Talatahari, M. Nouri, and F. Tadbiri, “Optimization of skeletal structures using artificial bee colony algorithm,” International Journal of Optimization in Civil Engineering, vol. 2, no. 4, pp. 557–571, 2012. View at Google Scholar
  31. B. F. Azar, N. M. Rahbari, and S. Talatahari, “Seismic mitigation of tall buildings using magnetorheological dampers,” Asian Journal of Civil Engineering, vol. 12, no. 5, pp. 637–649, 2011. View at Google Scholar · View at Scopus
  32. S. J. Dyke and B. F. Spencer Jr., “A comparison of semiactive control strategies for the MR damper,” in Proceedings of the IASTED International Conference on Intelligent Information Systems (IIS '97), pp. 580–584, Grand Bahama Island, Bahamas, 1997.