Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2014, Article ID 543081, 10 pages
http://dx.doi.org/10.1155/2014/543081
Research Article

A Genetic Algorithm for Locating the Multiscale Critical Slip Surface in Jointed Rock Mass Slopes

1School of Civil and Hydraulic Engineering, Dalian University of Technology, Dalian 116023, China
2State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116023, China

Received 17 September 2013; Revised 23 December 2013; Accepted 31 December 2013; Published 12 February 2014

Academic Editor: Jyh-Horng Chou

Copyright © 2014 Qiang Xu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The joints have great influence on the strength of jointed rock mass and lead to the multiscale, nonhomogeneous, and anisotropic characteristics. In order to consider these effects, a new model based on a genetic algorithm is proposed for locating the critical slip surface (CSS) in jointed rock mass slope (JRMS) from its stress field. A finite element method (FEM) was employed to analyze the stress field. A method of calculating the mechanical persistence ratio (MPR) was used. The calculated multiscale and anisotropic characteristics of the MPR were used in the fitness function of genetic algorithm (GA) to calculate the factor of safety. The GA was used to solve optimization problems of JRMS stability. Some numerical examples were given. The results show that the multiscale and anisotropic characteristics of the MPR played an important role in locating the CSS in JRMS. The proposed model calculated the CSS and the factor of safety of the slope with satisfactory precision.