Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2014, Article ID 627416, 10 pages
http://dx.doi.org/10.1155/2014/627416
Research Article

A Plant Propagation Algorithm for Constrained Engineering Optimisation Problems

1Department of Mathematical Sciences, University of Essex, Colchester CO4 3SQ, UK
2Department of Mathematics, Abdul Wali Khan University, Mardan KPK, Pakistan

Received 17 February 2014; Accepted 6 April 2014; Published 7 May 2014

Academic Editor: Changzhi Wu

Copyright © 2014 Muhammad Sulaiman et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X.-S. Yang, “Biology-derived algorithms in engineering optimization,” in Handbook of Bioinspired Algorithms and Applications, S. Olarius and A. Y. Zomaya, Eds., chapter 32, pp. 589–600, Chapman & Hall/CRC Press, 2005. View at Google Scholar
  2. K. Deb, Optimization for Engineering Design: Algorithms and Examples, PHI Learning, 2004.
  3. X.-S. Yang, “Biology-derived algorithms in engineering optimization,” http://arxiv.org/abs/1003.1888.
  4. H. Wang, A. Liu, X. Pan, and J. Yang, “Optimization of power allocation for multiusers in multi-spot-beam satellite communication systems,” Mathematical Problems in Engineering, vol. 2014, Article ID 780823, 10 pages, 2014. View at Publisher · View at Google Scholar
  5. L. Chen and H.-L. Liu, “An evolutionary algorithm based on the four-color theorem for location area planning,” Mathematical Problems in Engineering, vol. 2013, Article ID 271935, 9 pages, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  6. L. C. Cagnina, S. C. Esquivel, and C. A. C. Coello, “Solving engineering optimization problems with the simple constrained particle swarm optimizer,” Informatica, vol. 32, no. 3, pp. 319–326, 2008. View at Google Scholar · View at Scopus
  7. E. Sandgren, “Nonlinear integer and discrete programming in mechnical design optimization,” Journal of Mechanical Design, vol. 112, no. 2, pp. 223–229, 1990. View at Google Scholar · View at Scopus
  8. J. Z. Cha and R. W. Mayne, “Optimization with discrete variables via recursive quadratic programming—part 1: concepts and definitions,” Journal of Mechanical Design, vol. 111, no. 1, pp. 124–129, 1989. View at Publisher · View at Google Scholar
  9. J. E. Kelley, Jr., “The cutting-plane method for solving convex programs,” Journal of the Society for Industrial & Applied Mathematics, vol. 8, no. 4, pp. 703–712, 1960. View at Google Scholar · View at MathSciNet
  10. M. L. Balinski and P. Wolfe, “On benders decomposition and a plant location problem,” Tech. Rep. ARO-27, Mathematica, Princeton, NJ, USA, 1963. View at Google Scholar
  11. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation of state calculations by fast computing machines,” The Journal of Chemical Physics, vol. 21, no. 6, pp. 1087–1092, 1953. View at Google Scholar · View at Scopus
  12. C. Zhang and H.-P. Wang, “Mixed-discrete nonlinear optimization with simulated annealing,” Engineering Optimization, vol. 21, no. 4, pp. 277–291, 1993. View at Publisher · View at Google Scholar
  13. A. Salhi, L. G. Proll, D. R. Insua, and J. I. Martin, “Experiences with stochastic algorithms for a class of constrained global optimisation problems,” Recherche Operationnelle, vol. 34, no. 2, pp. 183–197, 2000. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  14. S.-J. Wu and P.-T. Chow, “Genetic algorithms for nonlinear mixed discrete-integer optimization problems via meta-genetic parameter optimization,” Engineering Optimization, vol. 24, no. 2, pp. 137–159, 1995. View at Publisher · View at Google Scholar
  15. J. H. Holland and J. S. Reitman, “Cognitive systems based on adaptive algorithms,” ACM SIGART Bulletin, no. 63, p. 49, 1977. View at Publisher · View at Google Scholar
  16. K. Lamorski, C. Sławiński, F. Moreno, G. Barna, W. Skierucha, and J. L. Arrue, “Modelling soil water retention using support vector machines with genetic algorithm optimisation,” The Scientific World Journal, vol. 2014, Article ID 740521, 10 pages, 2014. View at Publisher · View at Google Scholar
  17. R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Proceedings of the 6th International Symposium on Micro Machine and Human Science (MHS '95), pp. 39–43, IEEE, Nagoya, Japan, October 1995. View at Scopus
  18. G.-N. Yuan, L.-N. Zhang, L.-Q. Liu, and K. Wang, “Passengers' evacuation in ships based on neighborhood particle swarm optimization,” Mathematical Problems in Engineering, vol. 2014, Article ID 939723, 10 pages, 2014. View at Publisher · View at Google Scholar · View at MathSciNet
  19. X.-S. Yang, Nature-Inspired Metaheuristic Algorithms, Luniver Press, 2011.
  20. C. Blum and A. Roli, “Metaheuristics in combinatorial optimization: overview and conceptual comparison,” ACM Computing Surveys, vol. 35, no. 3, pp. 268–308, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. V. Gazi and K. M. Passino, “Stability analysis of social foraging swarms,” IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics, vol. 34, no. 1, pp. 539–557, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. X.-S. Yang and S. Deb, “Engineering optimisation by Cuckoo search,” International Journal of Mathematical Modelling and Numerical Optimisation, vol. 1, no. 4, pp. 330–343, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Salhi and E. S. Fraga, “Nature-inspired optimisation approaches and the new plant propagation algorithm,” in Proceedings of the The International Conference on Numerical Analysis and Optimization (ICeMATH '11), Yogyakarta, Indonesia, 2011.
  24. J. Brownlee, Clever Algorithms: Nature-Inspired Programming Recipes, 2011.
  25. E. H. L. Aarts, J. H. M. Korst, and P. J. M. van Laarhoven, “Simulated annealing,” in Local Search in Combinatorial Optimization, pp. 91–120, 1997. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  26. G. El-Talbi, Metaheuristics: From Design to Implementation, vol. 74, John Wiley & Sons, 2009.
  27. M. Jaberipour and E. Khorram, “Two improved harmony search algorithms for solving engineering optimization problems,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 11, pp. 3316–3331, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. C. A. C. Coello, “Use of a self-adaptive penalty approach for engineering optimization problems,” Computers in Industry, vol. 41, no. 2, pp. 113–127, 2000. View at Publisher · View at Google Scholar · View at Scopus
  29. K. S. Lee and Z. W. Geem, “A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice,” Computer Methods in Applied Mechanics and Engineering, vol. 194, no. 36–38, pp. 3902–3933, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Mahdavi, M. Fesanghary, and E. Damangir, “An improved harmony search algorithm for solving optimization problems,” Applied Mathematics and Computation, vol. 188, no. 2, pp. 1567–1579, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  31. M. Fesanghary, M. Mahdavi, M. Minary-Jolandan, and Y. Alizadeh, “Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems,” Computer Methods in Applied Mechanics and Engineering, vol. 197, no. 33–40, pp. 3080–3091, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Proceedings of the IEEE World Congress on Computational Intelligence, Evolutionary Computation (ICEC '98), pp. 69–73, Anchorage, Alaska, USA, May 1998. View at Scopus
  33. A. D. Belegundu and J. S. Arora, “A study of mathematical programming methods for structural optimization—part I: theory,” International Journal for Numerical Methods in Engineering, vol. 21, no. 9, pp. 1583–1599, 1985. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet · View at Scopus
  34. J. S. Arora, Introduction to Optimum Design, Academic Press, 2004.
  35. P. Papalambros and H. L. Li, “A production system for use of global optimization knowledge,” Journal of Mechanical Design, vol. 107, no. 2, pp. 277–284, 1985. View at Google Scholar · View at Scopus
  36. A. Homaifar, C. X. Qi, and S. H. Lai, “Constrained optimization via genetic algorithms,” Simulation, vol. 62, no. 4, pp. 242–254, 1994. View at Google Scholar · View at Scopus
  37. D. B. Fogel, “A comparison of evolutionary programming and genetic algorithms on selected constrained optimization problems,” Simulation, vol. 64, no. 6, pp. 397–404, 1995. View at Google Scholar · View at Scopus
  38. K. Deb, “An efficient constraint handling method for genetic algorithms,” Computer Methods in Applied Mechanics and Engineering, vol. 186, no. 2–4, pp. 311–338, 2000. View at Google Scholar · View at Scopus
  39. X.-S. Yang, “Firefly algorithm, stochastic test functions and design optimisation,” International Journal of Bio-Inspired Computation, vol. 2, no. 2, pp. 78–84, 2010. View at Publisher · View at Google Scholar
  40. J. Golinski, “An adaptive optimization system applied to machine synthesis,” Mechanism and Machine Theory, vol. 8, no. 4, pp. 419–436, 1973. View at Publisher · View at Google Scholar · View at Scopus