Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2014, Article ID 676313, 12 pages
http://dx.doi.org/10.1155/2014/676313
Research Article

Mathematical Foundations for Efficient Structural Controllability and Observability Analysis of Complex Systems

1Departamento de Matemática Aplicada a las Tecnologías de la Información, ETSI Telecomunicación, Universidad Politécnica de Madrid (UPM), Ciudad Universitaria s/n, 28040 Madrid, Spain
2Cátedra Orange, ETSI Telecomunicación, Universidad Politécnica de Madrid (UPM), Ciudad Universitaria s/n, 28040 Madrid, Spain
3Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Mass Avenue, Cambridge, 02139 MA, USA

Received 13 December 2013; Accepted 9 April 2014; Published 4 May 2014

Academic Editor: Rongni Yang

Copyright © 2014 Pedro J. Zufiria et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. E. Kalman, “Mathematical description of linear dynamical systems,” Journal of the Society for Industrial and Applied Mathematics A, vol. 1, no. 2, pp. 152–192, 1963. View at Google Scholar
  2. H. Nijmeijer and A. J. van der Schaft, Nonlinear Dynamical Control Systems, Springer, 1990. View at Zentralblatt MATH · View at MathSciNet
  3. A. Isidori, Nonlinear Control Systems, Springer, 1989.
  4. J. Slotine, Applied Nonlinear Control, Prentice Hall, 1991.
  5. M. Vidyasagar, Nonlinear Systems Analysis, 2002. View at MathSciNet
  6. M. M. Gupta, G. M. Trojan, and J. B. Kiszka, “Controllability of fuzzy control systems,” IEEE Transactions on Systems, Man and Cybernetics, vol. 16, no. 4, pp. 576–582, 1986. View at Google Scholar · View at Scopus
  7. W.-H. Ho, S.-H. Chen, and J.-H. Chou, “Observability robustness of uncertain fuzzy-model-based control systems,” International Journal of Innovative Computing, Information and Control, vol. 9, no. 2, pp. 805–819, 2013. View at Google Scholar
  8. C.-T. Lin, “Structural controllability,” IEEE Transactions on Automatic Control, vol. 19, no. 3, pp. 201–208, 1974. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  9. R. W. Shields and J. B. Pearson, “Structural controllability of multi-input linear systems,” IEEE Transactions on Automatic Control, vol. 21, no. 2, pp. 203–212, 1976. View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  10. S. Pequito, S. Kar, and A. P. Aguiar, “A structured systems approach for optimal actuator-sensor placement in linear time-invariant systems,” in American Control Conference (ACC '13), pp. 6108–6113, 2013.
  11. S. Pequito, S. Kar, and A. P. Aguiar, “Optimal cost actuator/sensor placement for large scale linear time-invariant systems: a structured systems approach,” in European Control Conference (ECC '12), pp. 815–820, 2013.
  12. S. Pequito, S. Kar, and A. P. Aguiar, “A framework for structural input/output and control configuration selection in large-scale systems,” submitted, http://arxiv.org/abs/1309.5868.
  13. Y.-Y. Liu, J.-J. Slotine, and A.-L. Barabási, “Controllability of complex networks,” Nature, vol. 473, no. 7346, pp. 167–173, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. L. A. Úbeda Medina, Controlabilidad y Observabilidad en Redes Complejas, Proyecto Fin de Carrera, ETSI Telecomunicación, Universidad Politécnica de Madrid, 2012.
  15. L. Úbeda, C. Herrera, I. Barriales, P. J. Zufiria, and M. Congosto, “A combined algorithm for analyzing structural controllability and observability of complex networks,” in Proceedings of the International Conference on Scientific Computing (CSC '13), pp. 172–177, Las Vegas, Nev, USA, July 2013.
  16. L. Úbeda, C. Herrera-Yagüe, I. Barriales-Valbuena, and P. J. Zufiria, “An algorithm for controllability in complex networks,” International Journal of Complex Systems in Science, vol. 3, no. 1, pp. 63–70, 2013. View at Google Scholar
  17. M. E. J. Newman, “The structure and function of complex networks,” SIAM Review, vol. 45, no. 2, pp. 167–256, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  18. A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  19. D. J. Watts and S. H. Strogatz, “Collective dynamics of 'small-world9 networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998. View at Google Scholar · View at Scopus
  20. J.-M. Dion, C. Commault, and J. van der Woude, “Generic properties and control of linear structured systems: a survey,” Automatica, vol. 39, no. 7, pp. 1125–1144, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  21. R. W. Shields and J. B. Pearson, “Author’s reply to comments on finding the generic rank of a structural matrix,” IEEE Transactions on Automatic Control, vol. 23, no. 3, p. 510, 1978. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at MathSciNet
  22. B. Friedland, Control System Design: An Introduction to State-Space Methods, McGraw-Hill, Inc, 1986.