Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2014, Article ID 683982, 8 pages
Research Article

Ubi-RKE: A Rhythm Key Based Encryption Scheme for Ubiquitous Devices

Department of Computer Science and Engineering, Seoul National University of Science and Technology, Seoul 139-743, Republic of Korea

Received 13 June 2014; Accepted 19 July 2014; Published 19 August 2014

Academic Editor: Young-Sik Jeong

Copyright © 2014 Jae Dong Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


As intelligent ubiquitous devices become more popular, security threats targeting them are increasing; security is seen as one of the major challenges of the ubiquitous computing. Now a days, applying ubiquitous computing in number of fields for human safety and convenience was immensely increased in recent years. The popularity of the technology is rising day by day, and hence the security is becoming the main focused point with the advent and rising popularity of the applications. In particular, the number of wireless networks based on ubiquitous devices has increased rapidly; these devices support transmission for many types of data traffic. The convenient portability of ubiquitous devices makes them vulnerable to security threats, such as loss, theft, data modification, and wiretapping. Developers and users should seriously consider employing data encryption to protect data from such vulnerabilities. In this paper, we propose a Rhythm Key based Encryption scheme for ubiquitous devices (Ubi-RKE). The concept of Rhythm Key based Encryption has been applied to numerous real world applications in different domains. It provides key memorability and secure encryption through user touching rhythm on ubiquitous devices. Our proposed scheme is more efficient for users than existing schemes, by providing a strong cipher.