Mathematical Problems in Engineering

Volume 2014, Article ID 705364, 7 pages

http://dx.doi.org/10.1155/2014/705364

## Fundamental Solutions to Time-Fractional Advection Diffusion Equation in a Case of Two Space Variables

Institute of Mathematics and Computer Science, Jan Długosz University in Częstochowa, Waszyngtona 4/8, 42-200 Częstochowa, Poland

Received 28 December 2013; Accepted 6 February 2014; Published 11 March 2014

Academic Editor: J. A. Tenreiro Machado

Copyright © 2014 Y. Z. Povstenko. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### Abstract

The fundamental solutions to time-fractional advection diffusion equation in a plane and a half-plane are obtained using the Laplace integral transform with respect to time and the Fourier transforms with respect to the space coordinates and . The Cauchy, source, and Dirichlet problems are investigated. The solutions are expressed in terms of integrals of Bessel functions combined with Mittag-Leffler functions. Numerical results are illustrated graphically.

#### 1. Introduction

The classical advection diffusion equation where is the diffusivity coefficient, is the velocity vector, has several physical interpretations in terms of Brownian motion, diffusion or heat transport with external force or with additional velocity field, diffusion of charge in the electrical field on comb structure, transport processes in porous media, groundwater hydrology, and so forth [1–7].

In the case of one spatial coordinate , (1) has the following form:

Investigation of different physical phenomena in media with complex internal structure has led to considering differential equations with derivatives of fractional order. The space-fractional [8–19], time-fractional [20–31], and space-time-fractional [32–39] generalizations of the advection diffusion equation were studied by many authors. In the majority of the abovementioned papers, the fractional generalizations of one-dimensional equation (2) were considered. In the papers dealing with space-fractional or space-time-fractional equations, one term with space derivative was substituted by the corresponding term with the fractional derivative [8, 9, 11–19, 33, 39] or both terms with space derivatives had fractional order [32, 35–38]. Several numerical schemes were proposed: the implicit difference method based on the shifted Grünwald-Letnikov approximation [14, 37], the explicit difference scheme [37], transformation of fractional differential equation into a system of ordinary differential equations and using the method of lines [15], the random walk algorithms [16, 17], the spectral regularization method [28], the Crank-Nicholson difference scheme [29], Adomian’s decomposition [26], a spatial and temporal discretization [30, 39], the fractional variational iteration method [31], and the homotopy perturbation method [27, 38].

In [24, 25], the analytical solution to one-dimensional time-fractional advection diffusion equation was obtained in terms of integrals of the -function.

In this paper, we study the fundamental solutions to time-fractional advection diffusion equation in a plane and a half-plane. The Laplace transform with respect to time and the Fourier transform with respect to the space coordinates are used. The Cauchy and the source problems in a plane and the Dirichlet problem for a half-plane are solved. The analytical solutions are expressed in terms of integrals of the Mittag-Leffler functions. Numerical results are illustrated graphically.

In (3) we use the Caputo fractional derivative [40–42]: where is the gamma function. For its Laplace transform rule, the Caputo fractional derivative requires the knowledge of the initial values of the function and its integer derivatives of order : where is the transform variable.

#### 2. The Fundamental Solution to the Cauchy Problem

Consider the time-fractional advection diffusion equation under initial condition In (7) we have introduced the constant multiplier to obtain the nondimensional quantity (see (23)) displayed in Figures.

The zero conditions at infinity are also imposed:

Introducing the new sought function and taking into account that for the Dirac delta function, , the initial-value problem (6)–(8) is reduced to the following ones: Next, we use the Laplace transform with respect to time (designated by the asterisk) and the double exponential Fourier transform with respect to the space coordinates and (marked by the tilde). In the transform domain, we get Here, is the Laplace transform variable and and are the Fourier transform variables.

Inversion of the integral transforms gives where the formula [40–42] has been used with being the Mittag-Leffler function in one parameter :

Solution (14) is not convenient for numerical calculations. To obtain the solution amenable to numerical treatment, we introduce the polar coordinates in the -plane: Hence,

Due to periodic properties of the integrand

Changing variable and taking into account the following integral [43]: where is the Bessel function of the order , we arrive at and, returning to the quantity according to (9), we get

The particular case of solution (22) corresponding to the time-fractional diffusion equation () was considered in [44, 45].

The results of numerical computations for are presented in Figure 1 for and in Figure 2 for .

The following nondimensional quantities: and the nondimensional coordinates (the similarity variables) have been introduced.

To calculate the Mittag-Leffler function in solution (22), we applied the algorithm suggested in [46].

#### 3. The Fundamental Solution to the Source Problem

Consider the time-fractional advection diffusion equation with the source term under zero initial condition, and conditions (8) at infinity.

The integral transform technique leads to Here, is the generalized Mittag-Leffler function in two parameters and : and the formula [40–42] for the inverse Laplace transform has been used.

The particular case of solution (28) corresponding to the time-fractional diffusion equation with was considered in [45, 47]. Solutions (22) and (28) coincide for .

The results of numerical computations for are presented in Figure 3 for with

#### 4. The Fundamental Solution to the Dirichlet Problem

In this case the time-fractional advection diffusion equation, is considered under zero initial condition and the Dirichlet boundary condition The zero conditions at infinity are imposed as follows:

As above, the new sought function is introduced (see (9)), and, for (10) in the half-plane , the Laplace transform with respect to time , the exponential Fourier transform with respect to the spatial coordinate , and the sin-Fourier transform with respect to the spatial coordinate are used. In the transform domain, we get and, after inversion of the integral transforms,

Introducing the polar coordinates in the -plane gives

Changing variables and taking into account the following integral [43]: we obtain

The particular case of solution (41) corresponding to the time-fractional diffusion equation () was considered in [48].

The results of numerical computations according to solution (41) for are presented in Figure 4 for and in Figure 5 for with Other nondimensional quantities are the same as in (23) and (24).

#### 5. Conclusions

We have considered the time-fractional advection diffusion equation in a plane and in a half-plane. The fundamental solutions to the Cauchy problem and to the source problem in a plane have been obtained as well as to the Dirichlet problem in a half-plane. It should be emphasized that the fundamental solution to the Cauchy problem in the case has the logarithmic singularity at the origin: This result is similar to the case of the time-fractional diffusion equation when (see [44, 49]). Such a singularity disappears only for the classical advection diffusion equation (). Due to singularity of the solution at the origin, in the case of , drift caused by the quantity is less noticeable than in the case of (compare Figures 1 and 2).

#### Conflict of Interests

The author declares that there is no conflict of interests regarding the publication of this paper.

#### References

- W. Feller,
*An Introduction to Probability Theory and Its Applications*, John Wiley & Sons, New York, NY, USA, 2nd edition, 1971. - A. E. Scheidegger,
*The Physics of Flow through Porous Media*, University of Toronto Press, Toronto, Canada, 3rd edition, 1974. - N. G. van Kampen,
*Stochastic Processes in Physics and Chemistry*, North-Holland, Amsterdam, The Netherlands, 1981. - H. Risken,
*The Fokker-Planck Equation*, Springer, Berlin, Germany, 1989. - M. Kaviany,
*Principles of Heat Transfer in Porous Media*, Springer, New York, NY, USA, 2nd edition, 1995. - V. E. Arkhincheev, “Anomalous diffusion and charge relaxation on comb model: exact solutions,”
*Physica A*, vol. 280, no. 3, pp. 304–314, 2000. View at Publisher · View at Google Scholar · View at Scopus - D. A. Nield and A. Bejan,
*Convection in Porous Media*, Springer, New York, NY, USA, 3rd edition, 2006. - A. S. Chaves, “A fractional diffusion equation to describe Lévy flights,”
*Physics Letters A*, vol. 239, no. 1-2, pp. 13–16, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus - S. Jespersen, R. Metzler, and H. C. Fogedby, “Lévy flights in external force fields: Langevin and fractional Fokker-Planck equations and their solutions,”
*Physical Review E*, vol. 59, no. 3, pp. 2736–2745, 1999. View at Google Scholar · View at Scopus - V. V. Yanovsky, A. V. Chechkin, D. Schertzer, and A. V. Tur, “Lévy anomalous diffusion and fractional Fokker-Planck equation,”
*Physica A*, vol. 282, no. 1-2, pp. 13–34, 2000. View at Publisher · View at Google Scholar · View at Scopus - D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, “Application of a fractional advection-dispersion equation,”
*Water Resources Research*, vol. 36, no. 6, pp. 1403–1412, 2000. View at Publisher · View at Google Scholar · View at Scopus - D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, “The fractional-order governing equation of Lévy motion,”
*Water Resources Research*, vol. 36, no. 6, pp. 1413–1423, 2000. View at Publisher · View at Google Scholar · View at Scopus - J. H. Cushman and T. R. Ginn, “Fractional advection-dispersion equation: a classical mass balance with convolution-Fickian flux,”
*Water Resources Research*, vol. 36, no. 12, pp. 3763–3766, 2000. View at Publisher · View at Google Scholar · View at Scopus - M. M. Meerschaert and C. Tadjeran, “Finite difference approximations for fractional advection-dispersion flow equations,”
*Journal of Computational and Applied Mathematics*, vol. 172, no. 1, pp. 65–77, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus - F. Liu, V. Anh, and I. Turner, “Numerical solution of the space fractional Fokker-Planck equation,”
*Journal of Computational and Applied Mathematics*, vol. 166, no. 1, pp. 209–219, 2004. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus - Y. Zhang, D. A. Benson, M. M. Meerschaert, and H.-P. Scheffler, “On using random walks to solve the space-fractional advection-dispersion equations,”
*Journal of Statistical Physics*, vol. 123, no. 1, pp. 89–110, 2006. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus - Q. Liu, F. Liu, I. Turner, and V. Anh, “Approximation of the Lévy-Feller advection-dispersion process by random walk and finite difference method,”
*Journal of Computational Physics*, vol. 222, no. 1, pp. 57–70, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus - Y. Zhang, D. A. Benson, M. M. Meerschaert, and E. M. LaBolle, “Space-fractional advection-dispersion equations with variable parameters: diverse formulas, numerical solutions, and application to the Macrodispersion Experiment site data,”
*Water Resources Research*, vol. 43, no. 5, Article ID W05439, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus - R. Schumer, M. M. Meerschaert, and B. Baeumer, “Fractional advection-dispersion equations for modeling transport at the Earth surface,”
*Journal of Geophysical Research*, vol. 114, no. 4, Article ID F00A07, 2009. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus - G. Jumarie, “A Fokker-Planck equation of fractional order with respect to time,”
*Journal of Mathematical Physics*, vol. 33, no. 10, pp. 3536–3542, 1992. View at Google Scholar · View at Zentralblatt MATH · View at Scopus - R. Metzler, E. Barkai, and J. Klafter, “Anomalous diffusion and relaxation close to thermal equilibrium: a fractional Fokker-Planck equation approach,”
*Physical Review Letters*, vol. 82, no. 18, pp. 3563–3567, 1999. View at Google Scholar · View at Scopus - E. Barkai, R. Metzler, and J. Klafter, “From continuous time random walks to the fractional Fokker-Planck equation,”
*Physical Review E*, vol. 61, no. 1, pp. 132–138, 2000. View at Google Scholar · View at Scopus - E. Barkai, “Fractional Fokker-Planck equation, solution, and application,”
*Physical Review E*, vol. 63, no. 4, Article ID 046118, 17 pages, 2001. View at Publisher · View at Google Scholar · View at Scopus - F. Liu, V. Anh, I. Turner, and P. Zhuang, “Time fractional advection-dispersion equation,”
*Journal of Applied Mathematics and Computing*, vol. 13, no. 1-2, pp. 233–245, 2003. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus - F. Huang and F. Liu, “The time fractional diffusion equation and the advection-dispersion equation,”
*ANZIAM Journal*, vol. 46, no. 3, pp. 317–330, 2005. View at Google Scholar · View at Zentralblatt MATH · View at Scopus - S. Momani, “An algorithm for solving the fractional convection-diffusion equation with nonlinear source term,”
*Communications in Nonlinear Science and Numerical Simulation*, vol. 12, no. 7, pp. 1283–1290, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus - S. Momani and A. Yıldırım, “Analytical approximate solutions of the fractional convection-diffusion equation with nonlinear source term by He's homotopy perturbation method,”
*International Journal of Computer Mathematics*, vol. 87, no. 5, pp. 1057–1065, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus - G. H. Zheng and T. Wei, “Spectral regularization method for a Cauchy problem of the time fractional advection-dispersion equation,”
*Journal of Computational and Applied Mathematics*, vol. 233, no. 10, pp. 2631–2640, 2010. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus - I. Karatay and S. R. Bayramoglu, “An efficient scheme for time fractional advection dispersion equations,”
*Applied Mathematics Sciences*, vol. 6, no. 98, pp. 4869–4878, 2012. View at Google Scholar · View at Zentralblatt MATH - H. Huang and X. Cao, “Numerical method for two dimensional fractional reaction subdiffusion equation,”
*European Physical Journal*, vol. 222, no. 8, pp. 1961–1973, 2013. View at Publisher · View at Google Scholar - M. Merdan, “Analytical approximate solutions of fractional convection-diffusion equation with modified Riemann-Liouville derivative by means of fractional variational iteration method,”
*Iranian Journal of Science & Technology*, no. 1, pp. 83–92, 2013. View at Google Scholar - G. M. Zaslavsky, M. Edelman, and B. A. Niyazov, “Self-similarity, renormalization, and phase space nonuniformity of Hamiltonian chaotic dynamics,”
*Chaos*, vol. 7, no. 1, pp. 159–181, 1997. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus - A. I. Saichev and G. M. Zaslavsky, “Fractional kinetic equations: solutions and applications,”
*Chaos*, vol. 7, no. 4, pp. 753–764, 1997. View at Google Scholar · View at Zentralblatt MATH · View at Scopus - K. M. Kolwankar and A. D. Gangal, “Local fractional Fokker-Planck equation,”
*Physical Review Letters*, vol. 80, no. 2, pp. 214–217, 1998. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus - D. Kusnezov, A. Bulgac, and G. D. Dang, “Quantum Lévy processes and fractional kinetics,”
*Physical Review Letters*, vol. 82, no. 6, pp. 1136–1139, 1999. View at Publisher · View at Google Scholar · View at Scopus - G. M. Zaslavsky,
*Hamiltonian Chaos and Fractional Dynamics*, Oxford University Press, New York, NY, USA, 2005. - F. Liu, P. Zhuang, V. Anh, I. Turner, and K. Burrage, “Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation,”
*Applied Mathematics and Computation*, vol. 191, no. 1, pp. 12–20, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus - A. Yıldırım and H. Koçak, “Homotopy perturbation method for solving the space-time fractional advection-dispersion equation,”
*Advances in Water Resources*, vol. 32, no. 12, pp. 1711–1716, 2009. View at Publisher · View at Google Scholar · View at Scopus - E. A. Abdel-Rehim, “Explicit approximation solutions and proof of convergence of space-time fractional advection dispersion equations,”
*Applied Mathematics*, vol. 4, no. 10, pp. 1427–1440, 2013. View at Publisher · View at Google Scholar - R. Gorenflo and F. Mainardi, “Fractional calculus: integral and differential equations of fractional order,” in
*Fractals and Fractional Calculus in Continuum Mechanics*, pp. 223–276, Springer, Wien, Austria, 1997. View at Google Scholar - I. Podlubny,
*Fractional Differential Equations*, Academic Press, New York, NY, USA, 1999. - A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo,
*Theory and Applications of Fractional Differential Equations*, Elsevier, Amsterdam, The Netherlands, 2006. - A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev,
*Integrals and Series. Elementary Functions*, Nauka, Moscow, Russia, 1981 (Russian). - Y. Z. Povstenko, “Fractional heat conduction equation and associated thermal stress,”
*Journal of Thermal Stresses*, vol. 28, no. 1, pp. 83–102, 2005. View at Publisher · View at Google Scholar · View at Scopus - Y. Z. Povstenko, “Two-dimensional axisymmetric stresses exerted by instantaneous pulses and sources of diffusion in an infinite space in a case of time-fractional diffusion equation,”
*International Journal of Solids and Structures*, vol. 44, no. 7-8, pp. 2324–2348, 2007. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus - R. Gorenflo, J. Loutchko, and Y. Luchko, “Computation of the Mittag-Leffler function and its derivatives,”
*Fractional Calculus and Applied Analysis*, vol. 5, no. 4, pp. 491–518, 2002. View at Google Scholar - Y. Z. Povstenko, “Stresses exerted by a source of diffusion in a case of a non-parabolic diffusion equation,”
*International Journal of Engineering Science*, vol. 43, no. 11-12, pp. 977–991, 2005. View at Publisher · View at Google Scholar · View at Zentralblatt MATH · View at Scopus - Y. Povstenko, “Signaling problem for time-fractional diffusion-wave equation in a half-plane,”
*Fractional Calculus and Applied Analysis*, vol. 11, no. 3, pp. 329–352, 2008. View at Google Scholar · View at Zentralblatt MATH - W. R. Schneider, “Fractional diffusion,” in
*Dynamics and Stochastic Processes*, vol. 355 of*Lecture Notes in Physics*, pp. 276–286, Springer, Berlin, Germany, 1990. View at Publisher · View at Google Scholar · View at Zentralblatt MATH