Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2014, Article ID 708275, 14 pages
http://dx.doi.org/10.1155/2014/708275
Research Article

A Comparative Study of Fuzzy Logic, Genetic Algorithm, and Gradient-Genetic Algorithm Optimization Methods for Solving the Unit Commitment Problem

The Laboratory of Technologies of Information and Communication and Electrical Engineering (LaTICE), National Higher School of Engineers of Tunis (ENSIT), University of Tunis, 05 Avenue Taha Hussein-Monfleury, 1008 Tunis, Tunisia

Received 5 April 2014; Revised 19 June 2014; Accepted 20 June 2014; Published 16 July 2014

Academic Editor: Erik Cuevas

Copyright © 2014 Sahbi Marrouchi and Souad Ben Saber. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. A. A. Victoire and A. E. Jeyakumar, “Unit commitment by a tabu-search-based hybrid-optimisation technique,” IEE Proceedings—Generation, Transmission and Distribution, vol. 152, no. 4, pp. 563–574, 2005. View at Publisher · View at Google Scholar
  2. C. C. A. Rajan and M. R. Mohan, “An evolutionary programming-based tabu search method for solving the unit commitment problem,” IEEE Transactions on Power Systems, vol. 19, no. 1, pp. 577–585, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Kharbash and W. Wang, “All-terminal network reliability optimization in fading environment via cross entropy method,” in proceeding of the IEEE International Conference on Communications (ICC '10), pp. 1–5, Cape Town, South Africa, May 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. W. L. Snyder Jr., H. D. Powell Jr., and J. C. Rayburn, “Dynamic programming approach to unit commitment,” IEEE Transactions on Power Systems, vol. 2, no. 2, pp. 339–348, 1987. View at Publisher · View at Google Scholar · View at Scopus
  5. X. Guan, P. B. Luh, H. Yan, and J. A. Amalfi, “An optimization-based method for unit commitment,” International Journal of Electrical Power and Energy Systems, vol. 14, no. 1, pp. 9–17, 1992. View at Publisher · View at Google Scholar · View at Scopus
  6. Z. Ouyang and S. M. Shahidehpour, “An intelligent dynamic programming for unit commitment application,” IEEE Transactions on Power Systems, vol. 6, no. 3, pp. 1203–1209, 1991. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Merlin and P. Sandrin, “A new method for unit commitment at Electricite de France,” IEEE Transactions on Power Apparatus and Systems, vol. 102, no. 5, pp. 1218–1225, 1983. View at Google Scholar · View at Scopus
  8. F. Zhuang and F. D. Galiana, “Towards a more rigorous and practical unit commitment by Lagrangian relaxation,” IEEE Transactions on Power Systems, vol. 3, no. 2, pp. 763–773, 1988. View at Publisher · View at Google Scholar · View at Scopus
  9. J. M. Arroyo and A. J. Conejo, “Optimal response of a thermal unit to an electricity spot market,” IEEE Transactions on Power Systems, vol. 15, no. 3, pp. 1098–1104, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. C. L. Chen and S. C. Wang, “Branch-and-bound scheduling for thermal generating units,” IEEE Transactions on Energy Conversion, vol. 8, no. 2, pp. 184–189, 1993. View at Publisher · View at Google Scholar · View at Scopus
  11. D. C. Walters and G. B. Sheble, “Genetic algorithm solution of economic dispatch with value point loading,” IEEE Transactions on Power Systems, vol. 8, no. 3, pp. 1325–1332, 1993. View at Publisher · View at Google Scholar · View at Scopus
  12. F. T. Lin, C. Y. Kao, and C. Hsu, “Applying the genetic approach to simulated annealing in solving some NP-hard problems,” IEEE Transactions on Systems, Man and Cybernetics, vol. 23, no. 6, pp. 1752–1767, 1993. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Kumar and V. Palanisamy, “A hybrid fuzzy dynamic programming approach to unit commitment,” IE (I) Journal-EL, vol. 88, 2008. View at Google Scholar
  14. A. A. Jasser, “Solving the unit-commitment problem using fuzzy-logic,” International Journal of Computer and Electrical Engineering, vol. 3, no. 6, pp. 824–829, 2011. View at Google Scholar
  15. H. M. F. AboElfotoh and L. S. Al-Sumait, “A neural approach to topological optimization of communication networks, with reliability constraints,” IEEE Transactions on Reliability, vol. 50, no. 4, pp. 397–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. F. T. Lin, C. Y. Kao, and C. C. Hsu, “Applying the genetic approach to simulated annealing in solving some NP-hard problems,” IEEE Transactions on Systems, Man and Cybernetics, vol. 23, no. 6, pp. 1752–1767, 1993. View at Publisher · View at Google Scholar · View at Scopus
  17. C. C. A. Rajan, M. R. Mohan, and K. Manivannan, “Refined simulated annealing method for solving unit commitment problem,” in Proceedings of the International Joint Conference on Neural Networks (IJCNN '02), vol. 1, pp. 333–338, Honolulu, Hawaii, USA, May 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. Ü. Başaran Filik and M. Kurban, “Solving unit commitment problem using modified subgradient method combined with simulated annealing algorithm,” Mathematical Problems in Engineering, vol. 2010, Article ID 295645, 15 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Sudhakaran, P. Ajay, and D. V. Raj, “Integrating genetic algorithms and Tabu search for unit commitment problem,” International Journal of Engineering of Science and Technology, vol. 2, no. 1, pp. 57–69, 2010. View at Publisher · View at Google Scholar
  20. C.-P. Cheng, C. W. Liu, and C. C. Liu, “Unit commitment by annealing—genetic algorithm,” International Journal of Electrical Power and Energy Systems, vol. 24, no. 2, pp. 149–158, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. C. Yingvivatanapong, Multi-area unit commitment and economic dispatch with market operation components [Ph.D. thesis], University of Texas, Arlington, Va, USA, 2006.
  22. I. G. Damousis, A. G. Bakirtzis, and P. S. Dokopoulos, “A solution to the unit-commitment problem using integer-coded genetic algorithm,” IEEE Transactions on Power Systems, vol. 19, no. 2, pp. 1165–1172, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. K. S. Swarup and S. Yamashiro, “Unit commitment solution methodology using genetic algorithm,” IEEE Transactions on Power Systems, vol. 17, no. 1, pp. 87–91, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. T. T. Maifeld and G. B. Sheble, “Genetic-based unit commitment algorithm,” IEEE Transactions on Power Systems, vol. 11, no. 3, pp. 1359–1370, 1996. View at Publisher · View at Google Scholar · View at Scopus
  25. S. A. Kazarlis, A. G. Bakirtzis, and V. Petridis, “A genetic algorithm solution to the unit commitment problem,” IEEE Transactions on Power Systems, vol. 11, no. 1, pp. 83–92, 1996. View at Publisher · View at Google Scholar · View at Scopus
  26. A. H. Mantawy, Y. L. A. Magid, and S. Z. Selim, “A simulated annealing algorithm for unit commitment,” IEEE Transactions on Power Systems, vol. 13, no. 1, pp. 197–204, 1998. View at Publisher · View at Google Scholar · View at Scopus
  27. N. P. Padhy, “Unit commitment using hybrid models: a comparative study for dynamic programming, expert system, fuzzy system and genetic algorithms,” International Journal of Electrical Power and Energy Systems, vol. 23, no. 8, pp. 827–836, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. U. B. Filik and M. Kurban, “Feasible modified subgradient method for solving the thermal unit commitment problem as a new approach,” Mathematical Problems in Engineering, vol. 2010, Article ID 159429, 11 pages, 2010. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  29. M. U. Kurban and A. Filik, “A comparative study of three different mathematical methods for solving the unit commitment problem,” Mathematical Problems in Engineering, vol. 2009, Article ID 368024, 13 pages, 2009. View at Publisher · View at Google Scholar
  30. N. Zhang, W. Li, R. Liu, Q. Lv, and L. Sun, “A three-stage birandom program for unit commitment with wind power uncertainty,” The Scientific World Journal, vol. 2014, Article ID 583157, 12 pages, 2014. View at Publisher · View at Google Scholar
  31. M. Angelova and T. Pencheva, “Tuning genetic algorithm parameters to improve convergence time,” International Journal of Chemical Engineering, vol. 2011, Article ID 646917, 7 pages, 2011. View at Publisher · View at Google Scholar
  32. D. K. Dey, “Mathematical study of adaptive genetic algorithm (AGA) with mutation and crossover probabilities,” International Journal of Advanced Computer Technology, vol. 3, no. 5, pp. 765–768, 2014. View at Google Scholar
  33. A. Y. Saber, T. Senjyu, A. Yona, and T. Funabashi, “Unit commitment computation by fuzzy adaptive particle swarm optimisation,” IET Generation, Transmission & Distribution, vol. 1, no. 3, pp. 456–465, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Marrouchi and S. Chebbi, “New strategy based on fuzzy-logic approach to solve the unit-commitment problem,” in Proceedings of the International Conference on Control, Engineering Information Technology (CEIT '14), Sousse, Tunisia, March 2014.
  35. M. Sudhakaran and P. Ajay-D-Vimal-Raj, “Integrating genetic algorithms and tabu search for unit commitment problem,” International Journal of Engineering, vol. 2, no. 1, pp. 57–69, 2010. View at Google Scholar
  36. S. Marrouchi and S. Chebbi, “Combined use of genetic algorithms and gradient optimization methods for unit commitment problem resolution,” Wulfenia Journal, vol. 20, no. 8, pp. 357–369, 2013. View at Google Scholar
  37. R. Abbassi, S. Marrouchi, M. Ben Hessine, S. Chebbi, and H. Jouini, “Voltage control strategy of an electrical network by the integration of the UPFC compensator,” International Review on Modelling and Simulations, vol. 5, no. 1, pp. 380–384, 2012. View at Google Scholar · View at Scopus
  38. M. B. Hessine, S. Marrouchi, S. Chebbi, H. Jouini, and R. Abbassi, “Preventive and curative strategies based on fuzzy logic used for voltage stabilization of an electrical network,” International Review on Modelling and Simulations, vol. 4, no. 6, pp. 3201–3207, 2011. View at Google Scholar · View at Scopus
  39. M. B. Hessine, H. Jouini, S. Chebbi, and S. Marrouchi, “Voltage and frequency stabilization of electrical networks by using load shedding strategy based on fuzzy logic controllers,” International Review of Electrical Engineering, vol. 7, no. 5, pp. 5694–5704, 2012. View at Google Scholar · View at Scopus
  40. R. Abbassi and S. Chebbi, “Energy management strategy for a grid-connected wind-solar hybrid system with battery storage: Policy for optimizing conventional energy generation,” International Review of Electrical Engineering, vol. 7, no. 2, pp. 3979–3990, 2012. View at Google Scholar · View at Scopus
  41. B. Zhao, C. X. Guo, B. R. Bai, and Y. J. Cao, “An improved particle swarm optimization algorithm for unit commitment,” International Journal of Electrical Power and Energy Systems, vol. 28, no. 7, pp. 482–490, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Wei, N. Li, H. Wu, Y. Zhang, X. Wang, and B. Zhu, “Daily generation scheduling based on genetic algorithm,” Automation of Electric Power Systems, vol. 23, no. 10, pp. 23–27, 1999. View at Google Scholar · View at Scopus
  43. C. H. Cai and Y. Y. Cai, “Optimization of unit commitment by genetic algorithm,” Power System Technology, vol. 21, pp. 44–47, 1997. View at Google Scholar
  44. K. Chandrasekaran, S. Hemamalini, S. P. Simon, and N. P. Padhy, “Thermal unit commitment using binary/real coded artificial bee colony algorithm,” Electric Power Systems Research, vol. 84, no. 1, pp. 109–119, 2012. View at Publisher · View at Google Scholar · View at Scopus
  45. S. Dekrajangpetch, G. B. Sheble, and A. J. Conejo, “Auction implementation problems using LaGrangian Relaxation,” IEEE Transactions on Power Systems, vol. 14, no. 1, pp. 82–88, 1999. View at Publisher · View at Google Scholar · View at Scopus