Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2014, Article ID 804586, 8 pages
http://dx.doi.org/10.1155/2014/804586
Research Article

Uniform Nonlinear Constitutive Model and Parameters for Clay in Different Consolidation Conditions Based on Regression Method

1School of Civil Engineering, Hubei Polytechnic University, Huangshi 435003, China
2School of Chemical and Material Engineering, Hubei Polytechnic University, Huangshi 435003, China

Received 19 December 2013; Accepted 3 April 2014; Published 6 April 2014

Academic Editor: Fei Kang

Copyright © 2014 Tao Cheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Duncan and C. Y. Chang, “Non-linear analysis of stress and strain in soils,” Journal of Geotechnical Engineering, vol. 96, no. 5, pp. 1629–1653, 1970. View at Google Scholar
  2. J. M. Duncan and V. R. Schaefer, “Finite element consolidation analysis of embankments,” Computers and Geotechnics, vol. 6, no. 2, pp. 77–93, 1988. View at Publisher · View at Google Scholar · View at Scopus
  3. R. L. Kondner, “Hyperbolic stress—strain response: cohesive soils,” Journal of the Soil Mechanics and Foundations Division, vol. 89, no. 1, pp. 115–143, 1963. View at Google Scholar
  4. M. Khabbazian, V. N. Kaliakin, and C. L. Meehan, “Performance of quasilinear elastic constitutive models in simulation of geosynthetic encased columns,” Computers and Geotechnics, vol. 38, no. 8, pp. 998–1007, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Miyazaki, N. Tenma, K. Aoki et al., “A nonlinear elastic model for tri-axial compressive properties of artificial methane-hydrate-bearing sediment samples,” Energies, no. 5, pp. 4057–4075, 2012. View at Google Scholar
  6. B. Huang, R. J. Bathurst, and K. Hatami, “Numerical study of reinforced soil segmental walls using three different constitutive soil models,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 135, no. 10, pp. 1486–1498, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. H. I. Ling and H. Liu, “Deformation analysis of reinforced soil retaining walls-simplistic versus sophisticated finite element analyses,” Acta Geotechnica, vol. 4, no. 3, pp. 203–213, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Abdelouhab, D. Dias, and N. Freitag, “Numerical analysis of the behaviour of mechanically stabilized earth walls reinforced with different types of strips,” Geotextiles and Geomembranes, vol. 29, no. 2, pp. 116–129, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. B. Cambou and K. Jafari, A Constitutive Model for Granular Materials Based on Two Plasticity Mechanisms, Constitutive Equations for Granular Non-Cohesive Soils, A.A. Balkema, Rotterdam, The Netherlands, 1987.
  10. J. H. Atkinson and G. Sallfors, “Experimental determination of stress-strain-time characteristics in laboratory and in situ tests,” in Proceedings of the 10th European Conference on Soil Mechanics and Foundation Engineering, pp. 915–956, May 1991. View at Scopus
  11. M. Maleki, P. Dubujet, and B. Cambou, “Modélisation hiérarchisée du comportement des sols,” Revue Française de Génie Civil, vol. 4, no. 7-8, pp. 895–928, 2000. View at Publisher · View at Google Scholar
  12. O. Jenck, D. Dias, and R. Kastner, “Three-dimensional numerical modeling of a piled embankment,” International Journal of Geomechanics, vol. 9, no. 3, pp. 102–112, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Turan, M. H. El Naggar, and D. Dundas, “Investigation of induced trench method using a full scale test embankment,” Geotechnical and Geological Engineering, vol. 3, no. 2, pp. 557–568, 2013. View at Google Scholar
  14. J. Jalini, M. K. Jafari, A. Shafiee et al., “An investigation on effect of inclusions on heterogeneity of stress, excess pore pressure and strain distribution in composite soils,” International Journal of Civil Engineering, vol. 10, no. 2, pp. 124–138, 2012. View at Google Scholar
  15. S. Likitlersuang, C. Surarak, B. Balasubramaniam et al., “Duncan-chang-parameters for hyperbolic stress strain behaviour of soft Bangkok clay,” in Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering (ICSMGE '13), 2013.
  16. B. Huang, R. J. Bathurst, K. Hatami, and T. M. Allen, “Influence of toe restraint on reinforced soil segmental walls,” Canadian Geotechnical Journal, vol. 47, no. 8, pp. 885–904, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. D. W. Hight, R. Boese, A. P. Butcher, C. R. I. Clayton, and P. R. Smith, “Disturbance of the Bothkennar clay prior to laboratory testing,” Geotechnique, vol. 42, no. 2, pp. 199–217, 1992. View at Publisher · View at Google Scholar · View at Scopus
  18. L. Z. Wang, Z. Y. Zhao, and L. L. Li, “Non-linear elastic model considering soil structural damage,” Journal of Hydraulic Engineering, vol. 20, no. 1, pp. 83–89, 2004. View at Google Scholar
  19. T. Cheng and K.-Q. Yan, “Modified hyperbolic model of high compressibility clay considering strain strengthening effects,” Journal of Civil, Architectural and Environmental Engineering, vol. 31, no. 5, pp. 49–53, 2009. View at Google Scholar · View at Scopus
  20. J. A. R. Ortigao, Soil Mechanics in the Light of Critical State Theories, A.A. Balkema, Rotterdam, The Netherlands, 1995.
  21. T. Cheng, J.-T. Wang, and K.-Q. Yan, “Digitalization modeling system for constitutive relation of geomaterial,” Journal of China University of Mining and Technology, vol. 16, no. 3, pp. 338–343, 2006. View at Google Scholar · View at Scopus
  22. T. Cheng, J. T. Wang, K. Q. Yan, and G. Li, “Coupling analysis method for elastoplastic consolidation of clay considering stress paths,” Chinese Journal of Rock Mechanics and Engineering, vol. 27, no. 2, pp. 403–409, 2008. View at Google Scholar · View at Scopus
  23. C. T. Zheng, Y. Y. Cai, Z. B. Qi et al., “Use regression analysis to study the improved Duncan-Chang model,” Journal of Wuhan University of Technology, vol. 34, no. 4, pp. 108–112, 2012. View at Google Scholar