Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2014, Article ID 980351, 14 pages
http://dx.doi.org/10.1155/2014/980351
Research Article

Improved Delay-Dependent Robust Stability Criteria for a Class of Uncertain Neutral Type Lur’e Systems with Discrete and Distributed Delays

1School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
2School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
3Key Laboratory for Neuroinformation of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 611731, China

Received 8 October 2013; Revised 28 February 2014; Accepted 21 March 2014; Published 29 April 2014

Academic Editor: Jianping Li

Copyright © 2014 Kaibo Shi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper is concerned with the problem of delay-dependent robust stability analysis for a class of uncertain neutral type Lur’e systems with mixed time-varying delays. The system has not only time-varying uncertainties and sector-bounded nonlinearity, but also discrete and distributed delays, which has never been discussed in the previous literature. Firstly, by employing one effective mathematical technique, some less conservative delay-dependent stability results are established without employing the bounding technique and the mode transformation approach. Secondly, by constructing an appropriate new type of Lyapunov-Krasovskii functional with triple terms, improved delay-dependent stability criteria in terms of linear matrix inequalities (LMIs) derived in this paper are much brief and valid. Furthermore, both nonlinearities located in finite sector and infinite one have been also fully taken into account. Finally, three numerical examples are presented to illustrate lesser conservatism and the advantage of the proposed main results.