Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2015 (2015), Article ID 275129, 8 pages
http://dx.doi.org/10.1155/2015/275129
Research Article

A Fuzzy Based Evolutionary Algorithm for Solving Multiobjective Optimal Power Flow with FACTS Devices

1Faculty of Electrical and Electronics, Sathyabama University, Chennai 600119, India
2Department of Electrical and Electronics Engineering, Adhiparasakthi Engineering College, Melmaruvathur 603319, India

Received 31 March 2015; Revised 12 July 2015; Accepted 15 July 2015

Academic Editor: Juan F. San-Juan

Copyright © 2015 R. Vanitha and J. Baskaran. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. G. Hingorani, “Flexible AC transmission,” IEEE Spectrum, vol. 30, no. 4, pp. 40–45, 1993. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Tripathy and S. Mishra, “Bacteria foraging-based solution to optimize both real power loss and voltage stability limit,” IEEE Transactions on Power Systems, vol. 22, no. 1, pp. 240–248, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Saravanan, S. M. R. Slochanal, P. Venkatesh, and J. P. S. Abraham, “Application of particle swarm optimization technique for optimal location of FACTS devices considering cost of installation and system loadability,” Electric Power Systems Research, vol. 77, no. 3-4, pp. 276–283, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Baskaran and V. Palanisamy, “Optimal location of FACTS devices in a power system solved by a hybrid approach,” Nonlinear Analysis: Theory, Methods & Applications, vol. 65, no. 11, pp. 2094–2102, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Shojaeian, E. S. Naeeni, M. Dolatshahi, and H. Khani, “A PSO-DP based method to determination of the optimal number, location, and size of FACTS devices in power systems,” Advances in Electrical and Computer Engineering, vol. 14, no. 1, pp. 109–114, 2014. View at Publisher · View at Google Scholar · View at Scopus
  6. W. Ongsakul and P. Bhasaputra, “Optimal power flow with FACTS devices by hybrid TS/SA approach,” International Journal of Electrical Power & Energy Systems, vol. 24, no. 10, pp. 851–857, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338–353, 1965. View at Google Scholar
  8. R. Narasimhan, “Goal programming in a fuzzy environment,” Decision Sciences, vol. 11, no. 2, pp. 325–336, 1980. View at Publisher · View at Google Scholar
  9. R. N. Tiwari, S. Dharmar, and J. R. Rao, “Fuzzy goal programming—an additive model,” Fuzzy Sets and Systems, vol. 24, no. 1, pp. 27–34, 1987. View at Publisher · View at Google Scholar · View at MathSciNet
  10. W. D. Rosehart, C. A. Cañizares, and V. H. Quintana, “Multiobjective optimal power flows to evaluate voltage security costs in power networks,” IEEE Transactions on Power Systems, vol. 18, no. 2, pp. 578–587, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Hazra and A. K. Sinha, “A multi-objective optimal power flow using particle swarm optimization,” European Transactions on Electrical Power, vol. 21, no. 1, pp. 1028–1045, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. R.-H. Liang, S.-R. Tsai, Y.-T. Chen, and W.-T. Tseng, “Optimal power flow by a fuzzy based hybrid particle swarm optimization approach,” Electric Power Systems Research, vol. 81, no. 7, pp. 1466–1474, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Sivasubramani and K. S. Swarup, “Multi-objective harmony search algorithm for optimal power flow problem,” International Journal of Electrical Power & Energy Systems, vol. 33, no. 3, pp. 745–752, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. X. H. He, W. Wang, Y. N. Wang, J. Kong, J. Geng, and S. B. Fan, “Fuzzy optimal power flow with multi-objective based on artificial bee colony algorithm in power system,” Applied Mechanics and Materials, vol. 448–453, pp. 2473–2477, 2014. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Azizipanah-Abarghooee, M. R. Narimani, B. Bahmani-Firouzi, and T. Niknam, “Modified shuffled frog leaping algorithm for multi-objective optimal power flow with FACTS devices,” Journal of Intelligent and Fuzzy Systems, vol. 26, no. 2, pp. 681–692, 2014. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Sreejith, K. Chandrasekaran, and S. P. Simon, “Application of touring ant colony optimization technique for optimal power flow incorporating thyristor controlled series compensator,” in Proceedings of the IEEE Region 10 Conference (TENCON '09), pp. 1–6, Singapore, January 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. O. Hassan, S. J. Cheng, and Z. A. Zakaria, “Steady-state modeling of static synchronous compensator and thyristor controlled series compensator for power flow analysis,” Information Technology Journal, vol. 8, no. 3, pp. 347–353, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. R. Vanitha, J. Baskaran, and M. Sudhakaran, “Multi objective optimal power flow with STATCOM using DE in WAFGP,” Indian Journal of Science and Technology, vol. 8, no. 2, pp. 191–198, 2015. View at Publisher · View at Google Scholar
  19. M. Noroozian, L. Ängquist, M. Ghandhari, and G. Andersson, “Use of UPFC for optimal power flow control,” IEEE Transactions on Power Delivery, vol. 12, no. 4, pp. 1629–1634, 1997. View at Publisher · View at Google Scholar · View at Scopus
  20. R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–359, 1997. View at Publisher · View at Google Scholar · View at MathSciNet
  21. H.-J. Zimmermann, “Fuzzy programming and linear programming with several objective functions,” Fuzzy Sets and Systems, vol. 1, no. 1, pp. 45–55, 1978. View at Google Scholar · View at MathSciNet
  22. A. Amid, S. H. Ghodsypour, and C. O'Brien, “Fuzzy multiobjective linear model for supplier selection in a supply chain,” International Journal of Production Economics, vol. 104, no. 2, pp. 394–407, 2006. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Ajay-D-Vimal Raj, Performance evaluation of swarm intelligence based power system optimization strategies [Ph.D. dissertation], Department of Electronics and Communication Engineering, Pondicherry University, Pondicherry, India, 2008.