Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2015, Article ID 512158, 9 pages
http://dx.doi.org/10.1155/2015/512158
Research Article

Landslide Occurrence Prediction Using Trainable Cascade Forward Network and Multilayer Perceptron

1Department of Software Engineering, Faculty of Science and Information Technology, Jadara University, Irbid 2001, Jordan
2School of Electrical & Electronic Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
3School of Distance Education, Universiti Sains Malaysia, 11600 Penang, Malaysia

Received 28 September 2014; Revised 18 December 2014; Accepted 25 December 2014

Academic Editor: Yudong Zhang

Copyright © 2015 Mohammad Subhi Al-batah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Varnes, Landslide Hazard Zonation: Preview of Principals and Practice, vol. 3 of Natural Hazards, UNESCO, International Assciation of Engineering Geologists, Commission on Landslides and Other Mass Movementson Slopes, Paris, France, 1984.
  2. D. J. Varnes, Landslide Hazard Zonation: Preview of Principals and Practice. Paris, UNESCO, Int Assciation of Engineering Geologists, Commission on Landslides and Other Mass Movementson Slopes, Natural Hazards V-3 Pp176, 1984.
  3. J. N. Hutchinson, “Keynote paper: landslide hazard assessment,” in Landslides, Proc. Sixth Int. Symp. on Landslides, February, Christchurch, New Zealand, D. H. Bell, Ed., vol. 3, pp. 1805–1841, A.A. Balkema, Rotterdam, The Netherlands, 1995. View at Google Scholar
  4. G. Zhang, B. E. Patuwo, and M. Y. Hu, “Forecasting with artificial neural networks: the state of the art,” International Journal of Forecasting, vol. 14, no. 1, pp. 35–62, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Sanzogni and D. Kerr, “Milk production estimates using feed forward artificial neural networks,” Computers and Electronics in Agriculture, vol. 32, no. 1, pp. 21–30, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Kumar, N. S. Raghuwanshi, R. Singh, W. W. Wallender, and W. O. Pruitt, “Estimating evapotranspiration using artificial neural network,” Journal of Irrigation and Drainage Engineering, vol. 128, no. 4, pp. 224–233, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Lashkarbolooki, Z. S. Shafipour, and A. Z. Hezave, “Trainable cascade-forward back-propagation network modeling of spearmint oil extraction in a packed bed using SC-CO2,” The Journal of Supercritical Fluids, vol. 73, pp. 108–115, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. M. S. Alkhasawneh, U. K. Bt Ngah, T. L. Tien, and N. A. B. Mat Isa, “Landslide susceptibility hazard mapping techniques review,” Journal of Applied Sciences, vol. 12, no. 9, pp. 802–808, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Lee, J. Ryu, K. Min, and J. Won, “Development of two artificial neural network methods for landslide susceptibility analysis,” in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '01), vol. 5, pp. 2364–2366, 2001.
  10. B. Pradhan, L. Saro, and M. F. Buchroithner, “A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses,” Computers, Environment and Urban Systems, vol. 34, no. 3, pp. 216–235, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Lee, J. Choi, and K. Min, “Probabilistic landslide hazard mapping using GIS and remote sensing data at Boun, Korea,” International Journal of Remote Sensing, vol. 25, no. 11, pp. 2037–2052, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. F. Guzzetti, A. Carrara, M. Cardinali, and P. Reichenbach, “Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy,” Geomorphology, vol. 31, no. 1–4, pp. 181–216, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Pradhan and S. Lee, “Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models,” Environmental Earth Sciences, vol. 60, no. 5, pp. 1037–1054, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. K.-W. Lim, L. T. Tay, and H. Lateh, “Landslide hazard mapping of Penang island using probabilistic methods and logistic regression,” in Proceedings of the IEEE International Conference on Imaging Systems and Techniques (IST '11), pp. 273–278, May 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. H.-J. Oh and B. Pradhan, “Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area,” Computers & Geosciences, vol. 37, no. 9, pp. 1264–1276, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. P. K. Pang, L. T. Tay, and H. Lateh, “Landslide hazard mapping of Penang Island using decision tree model,” in Proceedings of the International Conference on Systems and Electronic Engineering (ICSEE '12), December 2012.
  17. Q. Zhou and X. Liu, “Analysis of errors of derived slope and aspect related to DEM data properties,” Computers and Geosciences, vol. 30, no. 4, pp. 369–378, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Barletta and A. Gisario, “An application of neural network solutions to laser assisted paint stripping process of hybrid epoxy-polyester coating on aluminum substrates,” Surface and Coatings Technology, vol. 200, no. 24, pp. 6678–6689, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. M. S. Al-Batah, N. A. Mat Isa, K. Z. Zamli, Z. M. Sani, and K. A. Azizli, “A novel aggregate classification technique using moment invariants and cascaded multilayered perceptron network,” International Journal of Mineral Processing, vol. 92, no. 1-2, pp. 92–102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Haykin, Neural Networks a Comprehensive Foundation, 2nd edition, 1999.
  21. M. Kurban and U. B. Filik, “A new approach for next day load forecasting integrating artificial neural network model with weighted frequency bin blocks,” in Neural Information Processing, M. Ishikawa, K. Doya, H. Miyamoto, and T. Yamakawa, Eds., vol. 4985, pp. 703–712, Springer, Berlin, Germany, 2008. View at Google Scholar
  22. C. M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, Oxford, UK, 1995. View at MathSciNet
  23. G. Hinton, D. E. Rumelhart, and RJ. Williams, “Learning internal representations by error propagation,” in Parallel Distributed Processing: Explorations in the Microstructure of Cognition, D. E. Rumelhart and J. L. McClelland, Eds., vol. 1, pp. 318–362, MIT Press, Cambridge, UK, 1986. View at Google Scholar
  24. K. K. Aggarwal, Y. Singh, P. Chandra, and M. Puri, “Bayesian regularization in a neural network model to estimate lines of code using function points,” Journal of Computer Sciences, vol. 1, no. 4, pp. 505–509, 2005. View at Publisher · View at Google Scholar
  25. New Starits Time, Don't Over-Develop Penang to Avoid Landslides, 2012, http://www.nst.com.my/latest/don-t-over-develop-penang-to-avoid-landslides-1.193992.