Recent Advances on Modeling, Control, and Optimization for Complex Engineering Systems
View this Special IssueResearch Article  Open Access
Hwanyub Joo, Sung Hyun Kim, " LPV Control with Pole Placement Constraints for Synchronous Buck Converters with PiecewiseConstant Loads", Mathematical Problems in Engineering, vol. 2015, Article ID 686857, 8 pages, 2015. https://doi.org/10.1155/2015/686857
LPV Control with Pole Placement Constraints for Synchronous Buck Converters with PiecewiseConstant Loads
Abstract
This paper addresses the output regulation problem of synchronous buck converters with piecewiseconstant load fluctuations via linear parameter varying (LPV) control scheme. To this end, an outputerror statespace model is first derived in the form of LPV systems so that it can involve a mismatch error that temporally arises from the process of generating a feedforward control. Then, to attenuate the mismatch error in parallel with improving the transient behavior of the converter, this paper proposes an LMIbased stabilization condition capable of achieving both and poleplacement objectives. Finally, the simulation and experimental results are provided to show the validity of our approach.
1. Introduction
Drawing on the development of electronic technology, switching DCDC converters have been widely and successfully applied to a variety of power conversion systems such as DC power supplies, DC motor drivers, and power generation systems (see [1–4] and the references therein). Recently, with the growing interest in linear matrix inequalities (LMIs) [5], some advanced control techniques have been investigated regarding to output regulation of DCDC buck (stepdown) converters that produce a lower output voltage than the input voltage, especially for TS fuzzy control [2, 6–10]. Indeed, the asynchronous buck converters operating in a largesignal domain are generally modeled in terms of nonlinear systems. Thus, based on the TS fuzzy model derived from the averaging method for onetimescale discontinuous systems (AMOTSDS), [9] has successfully designed an integral TS fuzzy control with respect to the output regulation problem of the asynchronous buck converter. Meanwhile, in the case of synchronous buck converters [11–13], the use of the lowside FET plays an important role in eliminating the voltage drop across the power diode of the nonsynchronous converter, which allows buck converters to be modeled with linear timevarying systems.
In general, the operation of the DCDC converter is usually affected by the fluctuation of output loads [3, 9, 12, 13]. For this reason, it is of great importance to consider the presence of a wide load range in the problem of regulating the output voltage and current levels of DCDC converters; that is, it has become a hot topic to maintain high efficiency in a great load fluctuation. Moreover, due to the fact that conventional pulsewidth modulation (PWM) buck converters have poor efficiency under light load [14], numerous research efforts have been invested to improve the efficiency of the PWM converters with a wide load range (see [12, 15–17] and the references therein). However, a remarkable point is that most of references cited above have paid considerable attention at the hardware level to cover such problem. Further, [13] used a reduced system model with the limits in theoretically capturing the dynamic behavior of piecewiseconstant load fluctuation in the process of implementing the robust periodic eigenvalue assignment algorithm [18]. In other words, limited work has been found in terms of the control theory. Motivated by the concern, this paper proposes a suitable approach in light of the control theory to take the effect of load fluctuations into account.
This paper addresses the output regulation problem of synchronous buck converters with piecewiseconstant load fluctuations. To consider the presence of such load fluctuations, we derive an outputerror statespace model in the form of linear parameter varying (LPV) systems [19–21], thereby converting the underlying regulation problem into the stabilization problem. Here, it is worth noticing that a mismatch error that temporally arises from the process of generating a feedforward control is clearly incorporated into the LPV model and it is attenuated by the synthesis technique [22, 23]. However, design provides little control over the transient behavior [24, 25]. Hence, to attenuate the mismatch error in parallel with improving the transient behavior of the converter, this paper proposes an LMIbased stabilization condition capable of achieving both and poleplacement objectives. Finally, the simulation and experimental results are provided to show the validity of our approach.
Notation. The notations and mean that is positive semidefinite and positive definite, respectively. In symmetric block matrices, is used as an ellipsis for terms induced by symmetry. For any square matrix , . Lebesgue space consists of squareintegrable functions on .
2. Modeling for DC to DC PWM Buck Converter
The equivalent circuit for a class of synchronous DCDC buck converters and the corresponding closedloop control system are depicted in Figure 1, where the following notations are used.(i) denotes the static drain to source resistances of the highside and lowside power MOSFETs, respectively.(ii) and denote the power input and output voltages, respectively, where it is assumed that is timeinvariant.(iii) and denote the inductor current and the capacitor voltage, respectively.(iv) and denote the inductance and capacitance selected by the given design specifications including the switching frequency of MOSFETs.(v) and denote the equivalent series resistances of the inductor and capacitor.(vi) and denote the piecewiseconstant load resistance subject to and the duty ratio of PWM buck converter.Then, based on averaging method for onetimescale discontinuous system (AMOTSDS) [26], the mathematical model of the buck converter under consideration is described as follows:Further, combining (2) and (3) yieldsby which (1) and (2) can be rewritten as follows:Let be a unique equilibrium point of and assume that the value of is piecewiseconstant; that is, for (see Figure 1). Then, by (6), the equilibrium point of , that is, , is given byFurther, by (3), the equilibrium point of is given by . Hence, from (1), the equilibrium point of , that is, , is given by
Remark 1. This paper focuses on addressing the case where the variation of is subject to a class of switching signals whose finite intervals are larger than the setting time.
Remark 2. Indeed, it is extremely hard to directly measure the value of in the considered buck converter owing to the existence of (see Figure 1). Thus, to find the value of from the ones of the measured , , and , we introduce a method of using the following equality derived from (4):
Remark 3. From (9), we can see that in the equilibrium point, because .
Remark 4. To solve the regulation problem herein, we need to find the desired value of from (7), where is a prescribed value and can be established as follows:
3. LPV Control with Pole Placement Constraints
3.1. LPV Model Description
Let , , and , where and indicate the feedback and feedforward control inputs, respectively. Then, for , the system given in (5) and (6) can be converted into
Proposition 5. Let us consider the feedforward control input of the following form:where denotes the error that can temporally occur when finding and under the saturation operator (10). Here, a remarkable point is that if , then the feedforward control input for .
Under (12), the system given in (11) becomesIn what follows, let us defineThen, by letting , we can rewrite (13) as follows:whereHere, note that, from the fact that(14) can be represented by and , whereTherefore, we can derive the linear parameter varying (LPV) form of as follows:where and are decided from and . Here, it should be pointed out that the piecewiseconstant parameters satisfy the following properties:
3.2. Control Design
Now, consider a statefeedback control law of the following form:where . Then, the closedloop system under (15) and (21) is given bywhere denotes the performance output in the sense.
In order to address the stability problem, we consider the following theorem reported in [24], which will be used for the design of LPV control with pole placement constraints.
Theorem 6 (see [24]). The system matrix is stable (i.e., all the poles of lie in ) if and only if there exists a symmetric matrix such that , , where is related with the following characteristic function on the basis of the substitution : (i)left halfplane such that : ,(ii)disk with center at and radius :(iii)conic sector centered at the origin and with inner angle :
The following theorem presents a set of LMIs for stability criterion for (22).
Theorem 7. Let the required LMI region be given in terms of , , , and . Then, (22) is stable if there exist matrices and symmetric matrix such that, for all ,Moreover, the control gains can be reconstructed by .
Proof. From Theorem 6, the pole placement constraints are satisfied if and only if there exists such thatAccordingly, the stability conditions of (22) are given bywhere and . By defining , we can express that , which leads to by (20), where indicates the convex hull. Hence, the stability conditions given in (31) can be assured by (26)–(28), respectively.
Next, we discuss the performance such that for all , where represents the disturbance attenuation capability. As is well known, the stability criterion [19] can be derived fromHere, let . Then, (32) can be naturally rewritten as follows:which leads toAs a result, pre and postmultiplying (34) by and its transpose yieldwhich can be converted by the Schur’s complement [5] into Therefore, condition (36) is guaranteed by (29) in light of .
Remark 8. In general, when investigating the output regulation problem of synchronous buck converters, we need to consider the dynamic behavior of some natural phenomena such as piecewiseconstant load fluctuations and mismatch errors arising when generating the feedforward control. Thus, based on the framework of LPV control theory, this paper makes an attempt to impose such natural phenomena in the control design.
4. Simulation and Experimental Results
The parameters of the considered buck converter (1)(3) are listed in Table 1. As shown in Table 1, the equilibrium point of is given by , and the lower and upper bounds of are given by and , which leads to , , , and from (17). As a result, system (15) can be represented as follows:For three LMI regions , Theorem 6 provides the corresponding control gains and the minimized performances for (37), which are listed in Table 2. Figure 2 shows the behaviors of the output voltage , simulated by MATLAB (dotline) and PSIM (solidline), for the control gains corresponding to the LMI region . Here, to verify the effectiveness of the proposed approach, we consider the piecewiseconstant load that changes from to (see Figure 2(a)) and back to (see Figure 2(b)), where s is set for simulation. From Figure 2, it can be found that the transient responses obtained from MATLAB and PSIM simulations are approximately equal in view of the average mode, which means that the obtained LPV model (15) is valuable in investigating the regulation problem of synchronous buck converters. In particular, from the PSIM simulation result, we can see that the proposed control offers the short setting time (less than as mentioned in Remark 1), small overshoot , and nearly zero steady state error even though there exist piecewiseconstant load fluctuations in the synchronous buck converter.


Next, an experiment is additionally carried out to confirm the applicability of our approach verified through the simulation results. The parameters used herein are set the same as the ones listed in Table 1, and a dual Nchannel MOSFET (FDS8949) and two current sense amplifiers (LMP8481) are used for the hardware implementation. Here, we need to tackle several problems concerning the measurement of the required output signals to construct the controller. First of all, the ringing problem arising from the used MOSFET should be addressed by changing the Qpoint factor that influences the setting time of ; and by adding the RC snubber circuit placed between the lowside MOSFET and inductor. In what follows, the residual switching noises should be attenuated to exactly measure the values of , , and with respect to the common ground. To do so, the power voltage is thoroughly isolated from the applied voltage used for the operation of sensor units, which plays an important role in reducing such switching noises in the side of the sensor units. Finally, it is necessary to eliminate the undesirable effects of electromagnetic interference (EMI) that may be caused by the wrong PCB layout. In this sense, all net paths on the PCB board are designed as short as possible, and the top and bottom layers of the PCB board without inner layers are not assigned to draw the power and ground nets. Figure 3(a) shows the construction of our experimental bench, which consists of a prototype of buck converter (see Figure 3(b)), a dSPACE board, an oscilloscope, and an electronic loader. Here, data acquisition and realtime control system are implemented on the basis of dSPACE 1104 software and digital processor card, which have useful functions such as analog/digital converters (ADCs) and pulsewidth modulation (PWM) built in TMS320F240 DSP. Figure 4(a) shows the output response of the buck converter with changing from to , from which we can observe that the maximum overshoot of is approximately and its setting time is less than . In addition, Figure 4(b) shows the output response of the buck converter with changing back to , which illustrates that the maximum undershoot of is approximately and its setting time is less than . That is, by making a comparison between Figures 2 and 4, we can see that this experiment achieves similar output transition performances to the ones of the simulation results, which means that our approach can be practically applied to the output regulation problem of synchronous buck converters with load fluctuations.
(a)
(b)
(a)
(b)
5. Concluding Remarks
In this paper, we have shed some light on addressing the output regulation problem of synchronous buck converters with piecewiseconstant load fluctuations via linear parameter varying (LPV) control scheme. Thus, based on the derived LPV model, an stabilization condition is proposed such that (1) the mismatch error arising temporally in the feedforward control term can be attenuated and the closedloop poles can lie in the a prescribed LMI region. Finally, the validity of the proposed approach is verified through the simulation and experimental results.
Conflict of Interests
The authors declare that there is no conflict of interests regarding the publication of this paper.
Acknowledgment
This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF2012R1A1A1013687).
References
 C.S. Chiu, “TS fuzzy maximum power point tracking control of solar power generation systems,” IEEE Transactions on Energy Conversion, vol. 25, no. 4, pp. 1123–1132, 2010. View at: Publisher Site  Google Scholar
 D. Saifia, M. Chadli, S. Labiod, and H. R. Karimi, “${H}_{\infty}$ fuzzy control of DCDC converters with input constraint,” Mathematical Problems in Engineering, vol. 2012, Article ID 973082, 18 pages, 2012. View at: Publisher Site  Google Scholar  MathSciNet
 L.F. Shi and W.G. Jia, “Modeselectable highefficiency lowquiescentcurrent synchronous buck DCDC converter,” IEEE Transactions on Industrial Electronics, vol. 61, no. 5, pp. 2278–2285, 2014. View at: Publisher Site  Google Scholar
 R. SilvaOrtigoza, J. R. GarciaSanchez, and J. M. AlbaMartinez, “Twostage control design of a buck converter/DC motor system without velocity measurements via a ∑  Δ modulator,” Mathematical Problems in Engineering, vol. 2013, Article ID 929316, 11 pages, 2013. View at: Publisher Site  Google Scholar
 S. Boyd, L. E. Chauoi, E. Feron, and V. Balakrishan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, Pa, USA, 1994.
 K. Lian and C. Hong, “Currentsensorless flyback converters using integral TS fuzzy approach,” International Journal of Fuzzy Systems, vol. 15, no. 1, pp. 66–74, 2013. View at: Google Scholar  MathSciNet
 H. K. Lam and S. C. Tan, “Stability analysis of fuzzymodelbased control systems: application on regulation of switching DCDC converter,” IET Control Theory & Applications, vol. 3, no. 8, pp. 1093–1106, 2009. View at: Publisher Site  Google Scholar  MathSciNet
 K.Y. Lian, H.W. Tu, and C.W. Hong, “Current sensorless regulation for converters via integral fuzzy control,” IEICE Transactions on Electronics, vol. 90, no. 2, pp. 507–514, 2007. View at: Publisher Site  Google Scholar
 K.Y. Lian, J.J. Liou, and C.Y. Huang, “LMIbased integral fuzzy control of DCDC converters,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 1, pp. 71–80, 2006. View at: Publisher Site  Google Scholar
 Y. Li and Z. Ji, “TS modeling, simulation and control of the Buck converter,” in Proceedings of the 5th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD '08), pp. 663–667, Schandong, China, October 2008. View at: Publisher Site  Google Scholar
 R. Nowakowski and N. Tang, “Efficiency of synchronous versus nonsynchronous buck converters,” Analog Applications Journal, vol. 4, pp. 15–18, 2009. View at: Google Scholar
 Y. Qiu, X. Chen, C. Zhong, and C. Qi, “Limiting integral loop digital control for DCDC converters subject to changes in load current and source voltage,” IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1307–1316, 2014. View at: Publisher Site  Google Scholar
 G. Cimini, G. Ippoliti, S. Longhi, G. Orlando, and M. Pirro, “Synchronous buck converter control via robust periodic pole assignment,” in in Proceedings of European Control Conference (ECC '14), pp. 1921–1926, 2014. View at: Google Scholar
 W.R. Liou, M.L. Yeh, and Y. L. Kuo, “A high efficiency dualmode buck converter IC for portable applications,” IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 667–677, 2008. View at: Publisher Site  Google Scholar
 Ó. Lucía, J. M. Burdio, L. A. Barragán, C. Carretero, and J. Acero, “Series resonant multiinverter with discontinuousmode control for improved lightload operation,” IEEE Transactions on Industrial Electronics, vol. 58, no. 11, pp. 5163–5171, 2011. View at: Publisher Site  Google Scholar
 X. Zhang and D. Maksimovic, “Multimode digital controller for synchronous buck converters operating over wide ranges of input voltages and load currents,” IEEE Transactions on Power Electronics, vol. 25, no. 8, pp. 1958–1965, 2010. View at: Publisher Site  Google Scholar
 M. Qin and J. Xu, “Improved pulse regulation control technique for switching DCDC converters operating in DCM,” IEEE Transactions on Industrial Electronics, vol. 60, no. 5, pp. 1819–1830, 2013. View at: Publisher Site  Google Scholar
 S. Longhi and R. Zulli, “A robust periodic pole assignment algorithm,” IEEE Transactions on Automatic Control, vol. 40, no. 5, pp. 890–894, 1995. View at: Publisher Site  Google Scholar  MathSciNet
 S. H. Kim, “${H}_{\infty}$ outputfeedback LPV control for systems with input saturation,” International Journal of Control, Automation and Systems, vol. 10, no. 6, pp. 1267–1272, 2012. View at: Publisher Site  Google Scholar
 F. Wu and K. M. Grigoriadis, “LPV systems with parametervarying time delays: analysis and control,” Automatica, vol. 37, no. 2, pp. 221–229, 2001. View at: Publisher Site  Google Scholar  MathSciNet
 X. Zhang and H. Zhu, “Robust stability and stabilization criteria for discrete singular timedelay LPV systems,” Asian Journal of Control, vol. 14, no. 4, pp. 1084–1094, 2012. View at: Publisher Site  Google Scholar  MathSciNet
 J. C. Doyle and G. Stein, “Multivariable feedback design: Concepts for a classical/modern synthesis,” IEEE Transactions on Automatic Control, vol. 26, no. 1, pp. 4–16, 1981. View at: Google Scholar
 B. A. Francis, A Course in H_{∞} Control Theory, Lecture Notes in Control and Information Sciences, Springer, New York, NY, USA, 1987. View at: Publisher Site  MathSciNet
 M. Chilali and P. Gahinet, “${H}_{\infty}$ design with pole placement constraints: an LMI approach,” IEEE Transactions on Automatic Control, vol. 41, no. 3, pp. 358–367, 1996. View at: Publisher Site  Google Scholar  MathSciNet
 W. Assawinchaichote and S. K. Nguang, “Fuzzy ${H}_{\infty}$ output feedback control design for singularly perturbed systems with pole placement constraints: an LMI approach,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 3, pp. 361–371, 2006. View at: Publisher Site  Google Scholar
 J. Sun and H. Grotstollen, “Averaged modeling of switching power converters: reformulation and theoretical basis,” in Proceedings of the 23rd Annual IEEE Power Electronics Sepecialists Conference (PESC '92), pp. 1165–1172, 1992. View at: Google Scholar
Copyright
Copyright © 2015 Hwanyub Joo and Sung Hyun Kim. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.