Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2015, Article ID 707269, 12 pages
http://dx.doi.org/10.1155/2015/707269
Research Article

Theoretic Framework and Finite Element Implementation on Progressive Collapse Simulation of Masonry Arch Bridge

1Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
2Department of Civil and Environmental Engineering, West Virginia University, P.O. Box 6103, Morgantown, WV 26506, USA

Received 31 December 2014; Accepted 7 April 2015

Academic Editor: Stefan Balint

Copyright © 2015 Weibing Peng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Wardhana and F. C. Hadipriono, “Analysis of recent bridge failures in the United States,” Journal of Performance of Constructed Facilities, vol. 17, no. 3, pp. 144–150, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. Z. Xu, X. Lu, H. Guan, X. Lu, and A. Ren, “Progressive-collapse simulation and critical region identification of a stone arch bridge,” Journal of Performance of Constructed Facilities, vol. 27, no. 1, pp. 43–52, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. ASCE, “Minimum design loads for buildings and other structures,” ASCE 7-05, 2005. View at Google Scholar
  4. E. Taciroglu, A. Acharya, A. Namazifard, and I. D. Parsons, “Arbitrary Lagrangian-Eulerian methods for analysis of regressing solid domains and interface tracking,” Computers & Structures, vol. 87, no. 5-6, pp. 355–367, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. S. M. Marjanishvili, “Progressive analysis procedure for progressive collapse,” Journal of Performance of Constructed Facilities, vol. 18, no. 2, pp. 79–85, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Szyniszewski, “Dynamic energy based method for progressive collapse analysis,” in Proceedings of the Structures Congress: Don't Mess with Structural Engineers: Expanding Our Role, pp. 1–10, Austin, Tex, USA, April-May 2009. View at Publisher · View at Google Scholar
  7. K. H. Lebeau and S. J. Wadia-Fascetti, “Fault tree analysis of schoharie creek bridge collapse,” Journal of Performance of Constructed Facilities, vol. 21, no. 4, pp. 320–326, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. M. H. Scott and G. L. Fenves, “Krylov subspace accelerated newton algorithm: application to dynamic progressive collapse simulation of frames,” Journal of Structural Engineering, vol. 136, no. 5, pp. 473–480, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. H. Wibowo, S. S. Reshotkina, and D. T. Lau, “Modeling progressive collapse of RC bridges during earthquakes,” in Proceedings of the CSCE Annual General Conference, GC-176-1- GC-176-10, May 2009.
  10. A. Colombo and P. Negro, “Seismic progressive collapse analysis of reinforced concrete bridges by applied element method,” in Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging Environments, vol. 27, pp. 3019–3026, American Society of Civil Engineers, Reston, Va, USA, 2010. View at Google Scholar
  11. A. Astaneh-Asl, “Progressive collapse of steel Truss bridges, the case of I-35W collapse,” in Proceedings of the 7th International Conference on Steel Bridges, pp. 1–10, Guimarăes, Portugal, 2008.
  12. S. Hao, “A note of the I-35W bridge collapse,” Journal of Bridge Engineering, vol. 15, no. 5, pp. 608–614, 2010. View at Google Scholar
  13. H. Wang, A. Li, R. Hu, and J. Li, “Accurate stress analysis on steel box girder of long span suspension bridges based on multi-scale submodeling method,” Advances in Structural Engineering, vol. 13, no. 4, pp. 727–740, 2010. View at Publisher · View at Google Scholar · View at Scopus