Mathematical Problems in Engineering / 2016 / Article / Tab 11

Research Article

A Hybrid Method for Modeling and Solving Supply Chain Optimization Problems with Soft and Logical Constraints

Table 11

The results of numerical examples for MILP_T with hard and soft constraints.


Hard

12846 (818)138576191
221
333
444
121015 (978)139512115842
255
3107
41515
131292 (1250)1400NFFS
24
310
415
131564 (1522)140015936753
21010
31514
43030

Soft

12851 (822)138666031
221
331
448
121020 (982)139614615683
253
31016
41517
131297 (1254)140151024614
245
3107
41529
131569 (1526)14018935996
2104
3159
43040

Soft

12851 (822)138656191
221
331
448
121020 (982)139622715803
253
31016
41517
131297 (1254)140120325604
244
31010
41523
131569 (1526)140126336516
2104
3159
43040

Soft

12851 (822)138686191
221
333
444
121020 (982)139618515842
255
3107
41515
131297 (1254)140138326164
244
31011
41521
131569 (1526)140131836686
2104
31514
43030

: mode of transport ( = ).
: number of transportation units using transportation mode e.
: number of used transportation units using transportation mode e.
: penalty coefficient.
NFFS: Not found feasible solution.