Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2016, Article ID 3271042, 10 pages
http://dx.doi.org/10.1155/2016/3271042
Research Article

A Fault Diagnosis Method of High Voltage Circuit Breaker Based on Moving Contact Motion Trajectory and ELM

1Department of Computer, North China Electric Power University, Baoding, Hebei 071003, China
2Department of Electrical Engineering, North China Electric Power University, Baoding, Hebei 071003, China

Received 4 July 2016; Revised 9 October 2016; Accepted 23 October 2016

Academic Editor: Zhike Peng

Copyright © 2016 Weihua Niu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Z.-Z. Yang, J.-Y. Xu, B. Li, and Y. Liu, “Design of monitoring system for mechanical status of high voltage vacuum circuit breaker,” High Voltage Apparatus, vol. 49, no. 8, pp. 26–34, 2013. View at Google Scholar · View at Scopus
  2. Y. Meng, S. Jia, and M. Rong, “On-line monitoring method for mechanical characteristics of vacuum circuit breaker,” High Voltage Apparatus, vol. 42, no. 1, pp. 31–34, 2006. View at Google Scholar
  3. J. F. Xu, Y. L. Huang, and G. Z. Xu, “Study of travel-monitoring for high voltage circuit breaker,” High Voltage Apparatus, vol. 37, no. 1, pp. 10–13, 2001. View at Google Scholar · View at Scopus
  4. S. Jiang, S. Li, and J. Wang, “Disscussion on the mechanical characteristic of vacuum circuit breaker,” High Voltage Apparatus, vol. 38, no. 4, pp. 61–64, 2002. View at Google Scholar
  5. J. Chen, Z. Hu, and X. Su, “Key technology design to on-line monitoring of mechanical charactersitics for intelligent vacuum circuit breaker,” High Voltage Apparatus, vol. 50, no. 4, pp. 108–112, 2014. View at Google Scholar
  6. L.-Y. Du, Z.-H. Wang, G. Wang, and G.-Q. Li, “Design of real-time operating state monitoring system for HV breaker,” Electric Power Automation Equipment, vol. 26, no. 1, pp. 58–60, 2006. View at Google Scholar · View at Scopus
  7. J. Zhong, B. Li, and Y. Li, “Exploration and pratices of mechanical state diagnosis and monitoring techniques for high voltage circuit breaker,” High Voltage Apparatus, vol. 47, no. 2, pp. 53–60, 2011. View at Google Scholar
  8. X. Huang, W. Wang, Y. Zhang et al., “Mechanical properties of detection of circuit breaker by high speed digital camera method,” Journal of North China Electric Power University, vol. 38, no. 5, pp. 43–46, 2011. View at Google Scholar
  9. F. Liu, J. Liu, W. Su et al., “Time series of coastal sea surface temperature: simulation and prediction based on seasonal ARIMA model,” Journal of HuaihaiInstitute of Technology, vol. 18, no. 4, pp. 77–80, 2009. View at Google Scholar
  10. A. P. Piotrowski, M. J. Napiorkowski, J. J. Napiorkowski, and M. Osuch, “Comparing various artificial neural network types for water temperature prediction in rivers,” Journal of Hydrology, vol. 529, no. 1, pp. 302–315, 2015. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Zhang, X. Wang, and H. Zhang, “Temperature prediction of yam under infared drying based on neural networks,” Transaction of the Chinese Society for Agricultural Machinery, vol. 45, no. 11, pp. 246–249, 2014. View at Google Scholar
  12. L. Xu and S. Liu, “Study of short-term water quality prediction model based on wavelet neural network,” Mathematical and Computer Modelling, vol. 58, no. 3, pp. 807–813, 2013. View at Google Scholar
  13. Y.-H. Xiang, G.-Q. Zhang, and Y.-X. Pang, “Multi-information fusion fault diagnosis using SVM & improved evidence theory,” Journal of Vibration and Shock, vol. 34, no. 13, pp. 71–77, 2015. View at Publisher · View at Google Scholar · View at Scopus
  14. L. Lei, X.-D. Wang, Y.-Q. Xing, and K. Bi, “Multi-polarized HRRP classification by SVM and DS evidence theory,” Control and Decision, vol. 28, no. 6, pp. 861–866, 2013. View at Google Scholar · View at Scopus
  15. D. Wang, C. Lu, W. Jiang et al., “Study on PSO-based decision-tree SVM multi-class classification method,” Journal of Electronic Measurement and Instrumentation, vol. 29, no. 4, pp. 611–615, 2015. View at Google Scholar
  16. G. B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine: a new learning scheme of feedforward neural networks,” in Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN '04), pp. 985–990, 2004.
  17. P. Mohapatra, S. Chakravarty, and P. K. Dash, “An improved cuckoo search based extreme learning machine for medical data classification,” Swarm and Evolutionary Computation, vol. 24, pp. 25–49, 2015. View at Publisher · View at Google Scholar · View at Scopus
  18. A. R. Lima, A. J. Cannon, and W. W. Hsieh, “Nonlinear regression in environmental sciences using extreme learning machines: a comparative evaluation,” Environmental Modelling & Software, vol. 73, pp. 175–188, 2015. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Liu, Q. Zhang, and X. Li, “Distributed photovoltaic short-term power output forecasting based on extreme learning machine with kernel,” Transactions of the CSAE, vol. 30, no. 4, pp. 152–159, 2014. View at Publisher · View at Google Scholar · View at Scopus
  20. G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning machine for regression and multiclass classification,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 42, no. 2, pp. 513–529, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Liu, Y. Lei, and C. Xie, “Fast block-matching motion estimation based on a dual-cross search algorithm,” Journal of Computer Research and Development, vol. 43, no. 9, pp. 1666–1673, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Xiao, “Comparative research on several classical rapid algorithms of block-matching motion estimation,” Computer Knowledge and Technology, vol. 6, no. 32, pp. 9152–9154, 2010. View at Google Scholar
  23. D. Jiang, S. Zhao, X. Zhao et al., “Fault diagnosis method of high voltage circuit breaker based on ELM and three-dimensional diagram of vibration, acoustic and time,” Smart Grid, vol. 2, no. 8, pp. 8–12, 2014. View at Google Scholar
  24. J. Yuan, L. Zhang, Y. Wang et al., “Study of transformers fault diagnosis based on extreme learning machine,” Electrical Measurement & Instrumentation, vol. 50, no. 12, pp. 21–26, 2013. View at Google Scholar
  25. L. Chen, K. Sun, Y. Hou et al., “Fault diagnosis of steam turbine based on extreme learning machine,” Control and Instruments in Chemical Industry, vol. 4, pp. 435–438, 2013. View at Google Scholar
  26. G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: theory and applications,” Neurocomputing, vol. 70, no. 1–3, pp. 489–501, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. G.-B. Huang, “An insight into extreme learning machines: random neurons, random features and kernels,” Cognitive Computation, vol. 6, no. 3, pp. 376–390, 2014. View at Publisher · View at Google Scholar · View at Scopus