Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2016, Article ID 3271924, 15 pages
http://dx.doi.org/10.1155/2016/3271924
Research Article

Image Retrieval Based on Multiview Constrained Nonnegative Matrix Factorization and Gaussian Mixture Model Spectral Clustering Method

School of Information Science & Engineering, East China University of Science and Technology, Shanghai 200237, China

Received 15 June 2016; Accepted 3 November 2016

Academic Editor: Wanquan Liu

Copyright © 2016 Qunyi Xie and Hongqing Zhu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Wang, X. Zhang, X.-Y. Zhao, Z.-D. Zhang, and H.-X. Zhang, “A semantic description for content-based image retrieval,” in Proceedings of the 7th International Conference on Machine Learning and Cybernetics (ICMLC '08), pp. 2466–2469, Kunming, China, July 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. K.-H. Thung, R. Paramesran, and C.-L. Lim, “Content-based image quality metric using similarity measure of moment vectors,” Pattern Recognition, vol. 45, no. 6, pp. 2193–2204, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. J.-M. Guo and H. Prasetyo, “Content-based image retrieval using features extracted from halftoning-based block truncation coding,” IEEE Transactions on Image Processing, vol. 24, no. 3, pp. 1010–1024, 2015. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  4. L. Kotoulas and I. Andreadis, “Colour histogram content-based image retrieval and hardware implementation,” IEE Proceedings: Circuits, Devices and Systems, vol. 150, no. 5, pp. 387–393, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Kokare, P. K. Biswas, and B. N. Chatterji, “Texture image retrieval using new rotated complex wavelet filters,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 35, no. 6, pp. 1168–1178, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Yu, Y. Rui, and B. Chen, “Exploiting click constraints and multi-view features for image re-ranking,” IEEE Transactions on Multimedia, vol. 16, no. 1, pp. 159–168, 2014. View at Publisher · View at Google Scholar · View at Scopus
  7. X. Lyu, H. Li, and M. Flierl, “Hierarchically structured multi-view features for mobile visual search,” in Proceedings of the Data Compression Conference (DCC '14), pp. 23–32, March 2014. View at Publisher · View at Google Scholar
  8. J. Yu, D. Liu, D. Tao, and H. S. Seah, “On combining multiple features for cartoon character retrieval and clip synthesis,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 42, no. 5, pp. 1413–1427, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Braun, K. Hubay, E. Magyari, D. Veres, I. Papp, and M. Bálint, “Using linear discriminant analysis (LDA) of bulk lake sediment geochemical data to reconstruct lateglacial climate changes in the South Carpathian Mountains,” Quaternary International, vol. 293, no. 8, pp. 114–122, 2013. View at Publisher · View at Google Scholar · View at Scopus
  10. K. Y. Yeung and W. L. Ruzzo, “Principal component analysis for clustering gene expression data,” Bioinformatics, vol. 17, no. 9, pp. 763–774, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. X. Shi, “Independent component analysis,” IEEE Transactions on Neural Networks, vol. 15, pp. 735–741, 2001. View at Google Scholar
  12. V. C. Klema and A. J. Laub, “The singular value decomposition: its computation and some applications,” IEEE Transactions on Automatic Control, vol. 25, no. 2, pp. 164–176, 1980. View at Publisher · View at Google Scholar · View at MathSciNet
  13. S. Ewert and M. Muller, “Using score-informed constraints for NMF-based source separation,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '12), pp. 129–132, Kyoto, Japan, March 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. S. Babji and A. K. Tangirala, “Source separation in systems with correlated sources using NMF,” Digital Signal Processing, vol. 20, no. 2, pp. 417–432, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. E. M. Grais and H. Erdogan, “Regularized nonnegative matrix factorization using Gaussian mixture priors for supervised single channel source separation,” Computer Speech and Language, vol. 27, no. 3, pp. 746–762, 2013. View at Publisher · View at Google Scholar · View at Scopus
  16. D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,” Advances in Neural Information Processing Systems, vol. 13, no. 6, pp. 556–562, 2001. View at Google Scholar
  17. J.-L. Mao, “Geometric and Semantic similarity preserved non-negative matrix factorization for image retrieval,” in Proceedings of the International Conference on Wavelet Active Media Technology and Information Processing (ICWAMTIP '12), pp. 140–144, Chengdu, China, December 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Babaee, R. Bahmanyar, G. Rigoll, and M. Datcu, “Farness preserving nonnegative matrix factorization,” in Proceedings of the IEEE International Conference on Image Processing (ICIP '14), pp. 3023–3027, IEEE, Paris, France, October 2014.
  19. D. Cai, X. He, J. Han, and T. S. Huang, “Graph regularized nonnegative matrix factorization for data representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 8, pp. 1548–1560, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Liu, Z. Wu, X. Li, D. Cai, and T. S. Huang, “Constrained nonnegative matrix factorization for image representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 7, pp. 1299–1311, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. Y. Xiao, Z. Zhu, Y. Zhao, Y. Wei, S. Wei, and X. Li, “Topographic NMF for data representation,” IEEE Transactions on Cybernetics, vol. 44, no. 10, pp. 1762–1771, 2014. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. D. Khan, F. Ahmad, and S. A. Khan, “Content-based image retrieval using extroverted semantics: a probabilistic approach,” Neural Computing and Applications, vol. 24, no. 7-8, pp. 1735–1748, 2014. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Padala, S. Yarramalle, and K. P. Mhm, “An approach for effective image retrievals based on semantic tagging and generalized gaussian mixture model,” International Journal of Information Engineering and Electronic Business, vol. 7, no. 3, pp. 39–44, 2015. View at Publisher · View at Google Scholar
  24. S. Zeng, R. Huang, H. Wangc, and Z. Kang, “Image retrieval using spatiograms of colors quantized by gaussian mixture models,” Neurocomputing, vol. 171, no. 1, pp. 673–684, 2015. View at Google Scholar
  25. M. L. Piatek and B. Smolka, “Color image retrieval based on spatiochromatic multichannel gaussian mixture modelling,” in Proceedings of the 8th International Symposium on Image and Signal Processing and Analysis (ISPA '13), pp. 130–135, Trieste, Italy, September 2013.
  26. A. Marakakis, N. Galatsanos, A. Likas, and A. Stafylopatis, “Stafylopatis, application of relevance feedback in content based image retrieval using Gaussian mixture models,” in Proceedings of the IEEE International Conference on Tools with Artificial Intelligence, vol. 1, pp. 141–148, 2008.
  27. X. He, D. Cai, Y. Shao, H. Bao, and J. Han, “Laplacian regularized Gaussian mixture model for data clustering,” IEEE Transactions on Knowledge and Data Engineering, vol. 23, no. 9, pp. 1406–1418, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Roy, S. K. Parui, and U. Roy, “SWGMM: a semi-wrapped Gaussian mixture model for clustering of circular-linear data,” Pattern Analysis and Applications, vol. 19, no. 3, pp. 631–645, 2016. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Zeng, R. Huang, Z. Kang, and N. Sang, “Image segmentation using spectral clustering of Gaussian mixture models,” Neurocomputing, vol. 144, pp. 346–356, 2014. View at Publisher · View at Google Scholar · View at Scopus
  30. D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–791, 1999. View at Publisher · View at Google Scholar · View at Scopus
  31. X. Yan, W. Xiong, L. Hu, F. Wang, and K. Zhao, “Missing value imputation based on gaussian mixture model for the internet of things,” Mathematical Problems in Engineering, vol. 2015, Article ID 548605, 8 pages, 2015. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Oliva and A. Torralba, “Modeling the shape of the scene: a holistic representation of the spatial envelope,” International Journal of Computer Vision, vol. 42, no. 3, pp. 145–175, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. N. D. B. Triggs, “Histograms of oriented gradients for human detection,” CVPR Journals, vol. 1, no. 12, pp. 886–893, 2005. View at Google Scholar
  34. T. Ahonen, A. Hadid, and M. Pietikinen, “Face recognition with local binary patterns,” in Proceedings of the 8th European Conference on Computer Vision, vol. 3021 of Lecture Notes in Computer Science, pp. 469–481, Prague, Czech Republic, May 2004.
  35. J. Han and K.-K. Ma, “Fuzzy color histogram and its use in color image retrieval,” IEEE Transactions on Image Processing, vol. 11, no. 8, pp. 944–952, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. J.-S. Li and Y.-L. Pan, “A note on the second largest eigenvalue of the Laplacian matrix of a graph,” Linear and Multilinear Algebra, vol. 48, no. 2, pp. 117–121, 2000. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  37. Boyd, Vandenberghe, and Faybusovich, “Convex optimization,” IEEE Transactions on Automatic Control, vol. 51, no. 11, p. 1859, 2006. View at Publisher · View at Google Scholar
  38. S. G. J. Goldberger and H. Greenspan, “An efficient image similarity measure based on approximations of kl-divergence between two Gaussian mixtures,” in Proceedings of the IEEE International Conference on Computer Vision (ICCV '03), vol. 1, pp. 487–493, Nice, France, October 2003.
  39. A. Banerjee and J. Jost, “On the spectrum of the normalized graph Laplacian,” Linear Algebra and Its Applications, vol. 428, no. 11-12, pp. 3015–3022, 2008. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  40. G. Griffin, A. Holub, and P. Perona, Caltech-256 Object Category Dataset, California Institute of Technology, 2007.
  41. A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images,” Tech. Rep. TR-2009, Department of Computer Science, University of Toronto, Toronto, Canada, 2009. View at Google Scholar
  42. Y. R. Charles and R. Ramraj, “A novel local mesh color texture pattern for image retrieval system,” AEU—International Journal of Electronics and Communications, vol. 70, no. 3, pp. 225–233, 2016. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Liu, M. Yu, and L. Shao, “Multiview alignment hashing for efficient image search,” IEEE Transactions on Image Processing, vol. 24, no. 3, pp. 956–966, 2015. View at Publisher · View at Google Scholar · View at MathSciNet
  44. S. Cui and M. Datcu, “Comparison of kullback-leibler divergence approximation methods between gaussian mixture models for satellite image retrieval,” in Proceedings of the IEEE Geoscience and Remote Sensing Symposium (IGARSS '15), pp. 3719–3722, Milan, Italy, July 2015.
  45. J. Liu, C. Wang, J. Gao, and J. Han, “Multi-view clustering via joint nonnegative matrix factorization,” in Proceedings of the 2013 SIAM International Conference on Data Mining, pp. 252–260, Austin, Tex, USA, 2013.