Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2016, Article ID 4365372, 13 pages
http://dx.doi.org/10.1155/2016/4365372
Research Article

Instance-Wise Denoising Autoencoder for High Dimensional Data

School of Computer, Xi’an University of Posts & Telecommunications, Shaanxi 710121, China

Received 9 April 2016; Revised 31 August 2016; Accepted 15 September 2016

Academic Editor: Erik Cuevas

Copyright © 2016 Lin Chen and Wan-Yu Deng. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion,” Journal of Machine Learning Research, vol. 11, pp. 3371–3408, 2010. View at Google Scholar · View at MathSciNet
  2. S. Wang, Z. Ding, and Y. Fu, “Coupled marginalized auto-encoders for cross-domain multi-view learning,” in Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI '16), pp. 2125–2131, New York, NY, USA, July 2016.
  3. K. J. Geras and C. Sutton, “Scheduled denoising autoencoders,” https://arxiv.org/abs/1406.3269.
  4. M. Chen, K. Weinberger, F. Sha, and Y. Bengio, “Marginalized denoising auto-encoders for nonlinear representations,” in Proceedings of the 31st International Conference on Machine Learning (ICML '14), pp. 3342–3350, June 2014. View at Scopus
  5. W. Jiang, H. Gao, F.-L. Chung, and H. Huang, “The l2,1-norm stacked robust autoencoders for domain adaptation,” in Proceedings of the 13th AAAI Conference on Artificial Intelligence (AAAI '16), pp. 1723–1729, Phoenix, Ariz, USA, 2016.
  6. G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  7. M. Ranzato, Y.-L. Boureau, and Y. LeCun, “Sparse feature learning for deep belief networks,” in Advances in Neural Information Processing Systems, pp. 1185–1192, 2008. View at Google Scholar
  8. J. T. Zhou, I. W. Tsang, S. J. Pan, and M. Tan, “Heterogeneous domain adaptation for multiple classes,” in Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS '14), pp. 1095–1103, Reykjavik, Iceland, 2014.
  9. P.-T. de Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, “A tutorial on the cross-entropy method,” Annals of Operations Research, vol. 134, pp. 19–67, 2005. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  10. J. Liang and R. Liu, “Stacked denoising autoencoder and dropout together to prevent overfitting in deep neural network,” in Proceedings of the 8th International Congress on Image and Signal Processing (CISP '15), pp. 697–701, IEEE, Shenyang, China, October 2015. View at Publisher · View at Google Scholar
  11. K. Cho, “Simple sparsification improves sparse denoising autoencoders in denoising highly corrupted images,” in Proceedings of the 30th International Conference on Machine Learning (ICML '13), pp. 432–440, 2013.
  12. H. Wang, X. Shi, and D.-Y. Yeung, “Relational stacked denoising autoencoder for tag recommendation,” in Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI '15), pp. 3052–3058, Austin, Tex, USA, January 2015.
  13. G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, Md, USA, 3rd edition, 1996. View at MathSciNet
  14. E. Cambria, G.-B. Huang, L. L. C. Kasun et al., “Extreme learning machines [trends & controversies],” IEEE Intelligent Systems, vol. 28, no. 6, pp. 30–59, 2013. View at Publisher · View at Google Scholar
  15. J. T. Zhou, S. J. Pan, I. W. Tsang, and Y. Yan, “Hybrid heterogeneous transfer learning through deep learning,” in Proceedings of the 28th AAAI Conference on Artificial Intelligence, vol. 3, pp. 2213–2219, 2014.
  16. X. Shi, Q. Liu, W. Fan, P. S. Yu, and R. Zhu, “Transfer learning on heterogenous feature spaces via spectral transformation,” in Proceedings of the 10th IEEE International Conference on Data Mining (ICDM '10), pp. 1049–1054, IEEE, Sydney, Australia, December 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Duan, D. Xu, and I. Tsang, “Learning with augmented features for heterogeneous domain adaptation,” https://arxiv.org/abs/1206.4660.
  18. B. Kulis, K. Saenko, and T. Darrell, “What you saw is not what you get: domain adaptation using asymmetric kernel transforms,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR '11), pp. 1785–1792, IEEE, Colorado Springs, Colo, USA, 2011.
  19. X. Glorot, A. Bordes, and Y. Bengio, “Domain adaptation for large-scale sentiment classification: a deep learning approach,” in Proceedings of the 28th International Conference on Machine Learning (ICML '11), vol. 27, pp. 97–110, 2011.
  20. M. Chen, Z. Xu, K. Weinberger, and F. Sha, “Marginalized denoising autoencoders for domain adaptation,” https://arxiv.org/abs/1206.4683.
  21. N. Rasiwasia, J. Costa Pereira, E. Coviello et al., “A new approach to cross-modal multimedia retrieval,” in Proceedings of the 18th ACM International Conference on Multimedia (MM '10), pp. 251–260, ACM, 2010. View at Publisher · View at Google Scholar
  22. J. C. Pereira, E. Coviello, G. Doyle et al., “On the role of correlation and abstraction in cross-modal multimedia retrieval,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 3, pp. 521–535, 2014. View at Publisher · View at Google Scholar · View at Scopus
  23. J. B. Tenenbaum and W. T. Freeman, “Separating style and content with bilinear models,” Neural Computation, vol. 12, no. 6, pp. 1247–1283, 2000. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Wang, R. He, W. Wang, L. Wang, and T. Tan, “Learning coupled feature spaces for cross-modal matching,” in Proceedings of the 14th IEEE International Conference on Computer Vision (ICCV '13), pp. 2088–2095, IEEE, Sydney, Australia, December 2013. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Sharma, A. Kumar, H. Daume, and D. W. Jacobs, “Generalized Multiview Analysis: a discriminative latent space,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR '12), pp. 2160–2167, June 2012. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Wang, F. Nie, and H. Huang, “Robust distance metric learning via simultaneous l1-norm minimization and maximization,” in Proceedings of the 31st International Conference on Machine Learning (ICML '14), pp. 1836–1844, Beijing, China, June 2014.
  27. S.-D. Wei and S.-H. Lai, “Fast template matching based on normalized cross correlation with adaptive multilevel winner update,” IEEE Transactions on Image Processing, vol. 17, no. 11, pp. 2227–2235, 2008. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  28. F. Emmert-Streib and M. Dehmer, Information Theory and Statistical Learning, Springer, Berlin, Germany, 2010.
  29. G. Navarro, “A guided tour to approximate string matching,” ACM Computing Surveys, vol. 33, no. 1, pp. 31–88, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Rasiwasia, P. J. Moreno, and N. Vasconcelos, “Bridging the gap: query by semantic example,” IEEE Transactions on Multimedia, vol. 9, no. 5, pp. 923–938, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Prettenhofer and B. Stein, “Cross-language text classification using structural correspondence learning,” in Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics (ACL '10), pp. 1118–1127, Association for Computational Linguistics, Stroudsburg, Pa, USA, 2010, http://dl.acm.org/citation.cfm?id=1858681.1858795.
  32. A. Vinokourov, N. Cristianini, and J. Shawe-Taylor, “Inferring a semantic representation of text via cross-language correlation analysis,” in Proceedings of the 16th Annual Neural Information Processing Systems Conference (NIPS '02), pp. 1473–1480, December 2002. View at Scopus
  33. J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng, “Multimodal deep learning,” in Proceedings of the 28th International Conference on Machine Learning (ICML '11), pp. 689–696, Bellevue, Wash, USA, 2011.