Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2016 (2016), Article ID 5076879, 10 pages
http://dx.doi.org/10.1155/2016/5076879
Research Article

Optimal Control Applied to an Irrigation Planning Problem

1CMAT and Departamento de Matemática e Aplicações, Universidade do Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
2SYSTEC-ISR, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-464 Porto, Portugal
3Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal

Received 31 December 2015; Revised 22 March 2016; Accepted 26 April 2016

Academic Editor: Jean-Christophe Ponsart

Copyright © 2016 Sofia O. Lopes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Haie, R. M. Pereira, G. J. Machado, and A. A. Keller, “Analysis of effective efficiency in decision making for irrigation interventions,” Water Resources, vol. 39, no. 6, pp. 700–707, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Sousa, L. Ribeiro, and A. Carvalho, Uso da Agua na Agricultura, Instituto Nacional de Estatistica, 2011.
  3. J. R. Raposo, A REGA—Dos Primitivos Regadios as Modernas Técnicas de Rega, Fundação Calouste Gulbenkian, 1996.
  4. F. H. Clarke, Functional Analysis, Calculus of Variations and Optimal Control, vol. 264 of Graduate Texts in Mathematics, Springer, 2013. View at Publisher · View at Google Scholar · View at MathSciNet
  5. S. O. Lopes, F. A. C. C. Fontes, M. F. P. Costa, R. M. S. Pereira, A. M. Gonçalves, and G. J. Machado, “Irrigation planning: replanning and numerical solution,” in Proceedings of the 11th International Conference of Numerical Analysis and Applied Mathematics (ICNAAM '13), vol. 1558 of AIP Conference Proceedings, pp. 626–630, Rhodes, Greece, September 2013. View at Publisher · View at Google Scholar
  6. S. Lopes, F. Fontes, R. M. S. Pereira, and G. J. Machado, “Irrigation planning in the context of climate change,” in Proceedings of the 2nd International Conference on Mathematical Models for Engineering Science (MMES '11), pp. 239–244, December 2011.
  7. S. Lopes, F. Fontes, R. M. S. Pereira, M. Gonçalves, and G. J. Machado, “An optimal control approach to the irrigation planning problem,” in Conferencia Brasileira de Dinamica, Controle e Aplicações, Fortaleza, Brazil, 2013.
  8. S. O. Lopes, R. M. S. Pereira, F. A. C. C. Fontes, M. D. R. de Pinho, and G. J. Machado, “Optimal control of the irrigation problem: characterization of the solution,” Procedia Technology, vol. 17, pp. 699–704, 2014. View at Publisher · View at Google Scholar
  9. S. O. Lopes, F. A. C. C. Fontes, R. M. S. Pereira, M. D. Rosário de Pinho, and C. Ribeiro, “Optimal control for an irrigation planning problem: characterisation of solution and validation of the numerical results,” in CONTROLO'2014—Proceedings of the 11th Portuguese Conference on Automatic Control, vol. 321 of Lecture Notes in Electrical Engineering, pp. 157–167, Springer, Berlin, Germany, 2015. View at Publisher · View at Google Scholar
  10. S. Lopes, F. Fontes, R. M. S. Pereira, M. Gonçalves, and G. J. Machado, “Irrigation planning: an optimal control approach,” in Proceedings of the International Conference of Numerical Analysis and Applied Mathematics, vol. 1558 of AIP Conference Proceedings, pp. 622–626, Rhodes, Greece, September 2013. View at Publisher · View at Google Scholar
  11. L. Tonelli, “Sur une méthode directe du calcul des variations,” Rendiconti del Circolo Matematico di Palermo, vol. 39, no. 1, pp. 233–264, 1915. View at Publisher · View at Google Scholar
  12. R. Vinter, Optimal Control, Birkhäauser, Boston, Mass, USA, 2000.
  13. F. A. C. C. Fontes and S. O. Lopes, “Normal forms of necessary conditions for dynamic optimization problems with pathwise inequality constraints,” Journal of Mathematical Analysis and Applications, vol. 399, no. 1, pp. 27–37, 2013. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  14. F. Rampazzo and R. B. Vinter, “A theorem on existence of neighbouring trajectories satisfying a state constraint, with applications to optimal control,” IMA Journal of Mathematical Control and Information, vol. 16, no. 4, pp. 335–351, 1999. View at Publisher · View at Google Scholar
  15. F. A. C. C. Fontes and H. Frankowska, “Normality and nondegeneracy for optimal control problems with state constraints,” Journal of Optimization Theory and Applications, vol. 166, no. 1, pp. 115–136, 2015. View at Publisher · View at Google Scholar · View at MathSciNet · View at Scopus
  16. I. A. Walter, R. G. Allen, R. Elliott et al., “The ASCE standardized reference evapotranspiration equation,” ASCE-EWRI Task Committee Report, 2002. View at Google Scholar
  17. R. E. Horton, “An approach toward a physical interpretation of infiltration capacity,” Soil Science Society of America Proceedings, vol. 5, pp. 300–417, 1940. View at Google Scholar
  18. J. B. Betts, Pratical Methods for Optimal Control Using Nonlinear Programming, SIAM, Philadelphia, Pa, USA, 1943.