Research Article  Open Access
Ningning Yang, Chaojun Wu, Rong Jia, Chongxin Liu, "FractionalOrder Terminal SlidingMode Control for Buck DC/DC Converter", Mathematical Problems in Engineering, vol. 2016, Article ID 6935081, 7 pages, 2016. https://doi.org/10.1155/2016/6935081
FractionalOrder Terminal SlidingMode Control for Buck DC/DC Converter
Abstract
In recent years, the combination of fractional calculus (FC) and slidingmode control (SMC) has been gaining more and more interests due to fusion characteristics of SMC and FC. This paper presents the fractionalorder terminal slidingmode control (FTSMC) which has a new fractionalorder sliding surface and assures the finite time convergence of the output voltage error to the equilibrium point during the load changes. TSMC is a special case of FTSMC. Through mathematical analysis, the system can reach the slidingmode surface in finite time. The theoretical considerations have been verified by numerical simulations. And a Buck DC/DC converter application is presented and compared to illustrate the effectiveness of the proposed method. It is shown that the novel fractional terminal slidingmode control exhibits considerable improvement in terms of a faster output voltage response during load changes.
1. Introduction
The concept of fractional calculus as an extension of ordinary calculus can stretch back to 1695. In the letter to L’Hospital, Leibniz proposed the possibility of generalizing the operation of halforder derivative [1]. Though fractional calculus has a long history, only in recent years have the applications of fractional calculus to physics and engineering become an important aspect of modern technology. In comparison with the classical elementary calculus, the main advantage of fractional calculus is that it can provide an elegant description for the memory and hereditary properties of various real objects. The list of the applied fields of fractional calculus has been ever growing and includes the electrodeelectrolyte polarization, viscoelastic fluids, chaotic systems, and power converters [2–6]. Most striking of all, the fractional differentials and integrals are applied to the control theory, when the controller or the controlled system is described by fractional calculus [7–11]. In 1996, Oustaloup et al. developed the first fractionalorder controller which is the socalled CRONE [12]. Then some fractionalorder control strategies are proposed one after another, such as fractionalorder PID controllers [13], fractionalorder slidingmode controllers [14–16], fractionalorder optimal controllers [17], and fractionalorder adaptive controllers [18, 19].
DC/DC power converters, which work in switch mode, are applied in a wide variety of applications, including DC motor drives, active filters, computers, power supplies, and medical instrumentation. The Buck converter is one of the simplest but most useful power converters that can convert a DC input to a DC output at a lower voltage. There are some other basic DC/DC converters, namely, the Boost, BuckBoost, Cuk, Zeta, and Sepic. Each of these converters consists of the passive power switch, the active power switch, and the storage elements. The main objective of most closedloop feedback controlled DC/DC converters is to ensure that the converter operates with fast dynamical response, small steadystate output error, and low overshoot, while maintaining high efficiency and low noise emission in terms of rejection of input voltage changes, parameter uncertainties, and load variations [20]. The designing of high performance control strategy is always a challenge, because DC/DC converters are inherently timevarying variablestructure nonlinear systems. Nonlinear control strategies [21–23] are better candidates in DC/DC converters than other linear ones. Among the nonlinear control strategies, the slidingmode control (SMC) has been well known due to its fast dynamic response, robustness to disturbances, guaranteed stability, parameter variations, and simplicity in implementation. Moreover, compared with other nonlinear control strategies, the SMC method is easy to implement and has a high degree of flexibility in the designing process.
The slidingmode control is an effective robust control strategy with the feature of switching the control law to force the state trajectories of the system from the initial states onto some predefined sliding surface which exhibit desired dynamics. When in the sliding mode, the closedloop response becomes totally insensitive to both internal parameter uncertainties and external disturbances. Compared with the SMC, the terminal slidingmode control (TSMC) has some superior properties, such as the state of the system which converges in finite time and the higher steadystate tracking accuracy. Near the equilibrium point the rate of the convergence is being speeded up, so the TSMC is more suitable for high precision control. In recent years, the combination of fractionalorder control (FOC) and slidingmode control (SMC) has been gaining more and more interests from the systems control community. An introductory work on the application in fractionalorder sliding mode is reported in [24]; the double integrator is introduced as the plant under control. A fuzzy fractionalorder slidingmode controller is adopted to control nonlinear systems in [25]. In [26], fractionalorder slidingmode control strategies for power electronic Buck converters are presented, where pulsewidth modulation (PWM) sets the basis for the regulation of switched mode converters. In [27], authors collect different methods to apply FOC in SMC through the use of fractionalorder surfaces which are fractionalorder PID or fractionalorder PI and propose a direct Boolean control strategy in order to avoid using PWM.
In this paper, we focus on the introduction of the FOC in TSMC for switching systems. The fractionalorder terminal slidingmode control (FTSMC) method has been adopted for controlling the Buck converter. The idea of such method is used to design a novel nonlinear sliding surface function which is a fusion of characteristics of TSMC and FOC. Based on the Lyapunov stability theory, a fractionalorder slidingmode control law is derived to assure finite time convergence of the output voltage error to the equilibrium point. Through mathematical analysis, we obtain the finite time of FTSMC. It is shown that TSMC is a special case of FTSMC. The theoretical considerations have been verified by numerical simulations and a Buck converter application is given to show the superiority of the proposed strategy. The fractional terminal slidingmode control exhibits considerable improvement in terms of a faster output voltage response during load changes. FTSMC can overcome the influence which disturbances bring about to control system and guarantee that DC/DC converter keeps good dynamic and steady performances. The output can follow the given well, and the disturbances almost do not affect the output.
The rest of this paper is organized as follows. In Section 2, some basic concept and definitions of the fractional calculus are introduced. Then the basic principle of the Buck converter in CCM is introduced. In Section 3, the integerorder TSMC is briefly reviewed. In Section 4, FTSMC is described for the Buck converter. In Section 5, numerical simulation results are presented to verify the theoretical considerations and an application to Buck converter is given to show the superiority of the proposed strategy. Finally, some concluding remarks of this paper are drawn in Section 6.
2. Preliminaries
In this section, firstly, some basic concept and definitions of fractional calculus are introduced. Afterwards, a brief introduction to the basic principle of the Buck converter in CCM is presented.
2.1. The Basis of Fractional Calculus
In fractional calculus, the operator is the differintegral operator which takes both integrals and derivatives in one single expression. It denotes generalization of integrals and derivatives to arbitrary order and can be defined as follows:where can be an arbitrary real number, which denotes the order of the operation, and and are the lower and upper limits.
Definition 1. In the fractional calculus, the Gamma function proposed by Euler is defined by the integralwhich satisfies , and converges in the right half of the complex plane.
Several reputed definitions for fractional derivatives are put forward including RiemannLiouville definition, GrunwaldLetnikov definition, Caputo definition, Weyl definition, and Marchaud definition. Among them, being the bestknown one, RiemannLiouville definition is precisely studied.
Definition 2 (see [7]). RiemannLiouville definition of the thorder fractional derivative operator is given bywhere .
Definition 3 (see [7]). RiemannLiouville definition of the thorder fractional derivative operator is defined byAccording to this definition, the derivative of a time function with , , is evaluated as
Definition 4 (see [7]). If the fractional derivative ) and a function are integrable, then
2.2. Brief Introduction of the Buck Converter in CCM
The Buck converter, sometimes called a stepdown power stage, is a popular nonisolated power stage topology. A simplified schematic of the Buck converter is shown in Figure 1(a).
(a)
(b)
(c)
The basic operation of the Buck converter can be regarded as piecewise switched dynamical systems, involving toggling among a set of linear or nonlinear circuit topologies. In continuous conduction mode (CCM), there are two switching modes. When the switch (labeled as S in Figure 1(b)) is turned on, the inductor current passes through the switch, and the diode is reversebiased with the inductor current ramping up. When the switch (labeled as S in Figure 1(c)) is turned off, the inductor maintains current flow in the same direction so that the diode is forwardbiased. And this causes the inductor current to ramp down. The process repeats cyclically. For the operation described above, we have two state equations as follows.
When S is turned on,When S is turned off,Combining (7) and (8) giveswhere is the control input. The switch is in the ON state for and in the OFF state for .
Define the output voltage error as follows:where is the reference value of the output voltage. By taking the time derivative of (10), which is the rate of change of voltage error can be expressed asThen the dynamics of can be given asSo, it can be concluded that
3. The IntegerOrder Terminal SlidingMode Control for the Buck Converter
The conventional TSM concept can be described aswhere is a designed positive constant, , and and are both positive odd integers which satisfy the following condition: . When the system is in the terminal sliding mode (), we can get its dynamics from (14):Rewriting (15) yieldsGiven any initial state and which is the terminal attractor of the system. Taking integral of both sides of (16), the finite time is obtained by
This means that state can converge to zero in a finite time. In other words, the term “terminal” referred to equilibrium zero and can be reached in finite time and it is stable:
The equivalent control can be expressed as
4. The FractionalOrder Terminal SlidingMode Control Method for the Buck Converter
Theorem 5. In order to introduce the socalled fractionalorder terminal slidingmode model, a fractionalorder sliding surface function can be defined aswhere , is a designed positive constant, , and and are both positive odd integers which satisfy the following condition: . For Buck converter with FTSMC, if the control is designed aswhere , , , then states and will converge to zero in finite time. Furthermore, the system will be in the terminal sliding mode.
Proof. Select the Lyapunov function asTaking the derivative of (22),Substituting (12) into (23) results inSubstituting (21) into (24) results inBecause the controller parameter is positive, we can find and . In other words, the controlled system satisfies the reaching condition.
When the system reaches the sliding surface , it is in the terminal sliding mode. Its dynamics can be determined by the following equation:Taking the concept of fractional integral and derivative operators into account, one obtainsFrom (6), we can getwhere . So, it can be concluded thatAccording to Definition 3, we haveSubstituting (30) into (29) results inEquation (31) can be rewritten asTaking integral of both sides of (32),The finite time is obtained byTherefore, it can be concluded that system trajectories can reach the equilibrium point in finite time. When , it is obvious that is equivalent to . It means that the finite time taken to attain to the equilibrium point of the FTSMC system is the same as the one of the TSMC system as given in (17).
5. Simulation Results
The block diagram of the DC/DC Buck converter with the proposed FTSMC method is depicted in Figure 2. In order to show the performance of the proposed methods, the DC/DC Buck converter system has been tested by simulations. Simulations are carried out using Matlab/Simulink. Parameters of Buck converter are given in Abbreviations.
In other literatures, the influences of parameters and have been studied. This paper focuses on the influence of the order parameter on the control effect. Table 1 shows the parameters of the controller.

As shown in Figure 3, when and , the value range of is between 0 and 1. curve is not a monotonic function. When the value of is about 0.8, get the minimum value. The parameter increases the degree of freedom of the original terminal slidingmode controller. The slidingmode surface is selected by the original 2 parameters and becomes the three parameters .
Figure 4 shows the simulated startup and transient responses of the output voltage obtained by FTSMC strategies with different values. It is interesting to note that the output voltage responses become faster with decreasing the value of . Therefore, the value of is chosen to make compromise between startup and transient responses of the converter. With the decrease of , the output voltage response is gradually reduced. When , the overshoot of the system appears. The reason is that, with the decrease of , the integral weight is gradually increasing; that is, the cumulative effect on the time scale increases and then affects the system overshoot, which also verifies the influence of on as shown in Figure 3. When , the overshoot of the system exceeds 20%.
In order to compare the control effect of TSMS, FTSMC, and SMC, select , , and . As shown in Figure 5, the response time of the system with FTSMC is less than others. At , the load resistance is changed from to . Because the load is lighter, the output current will be reduced. Then the output voltage has a short stepup. It can be seen that the output voltage returns faster to in FTSMC.
Figure 6 shows the output voltage responses due to the step changes in from to . We can find the same results as above. The control effect of FTSMC is better.
It is obvious that the FTSMC method acts faster than others in correcting the output voltage when a step change takes place in . On the other hand, as shown in Figure 7, it is clear that SMC and TSMC result in a slight steadystate error. By contrast, the FTSMC method has the lesser steadystate error.
6. Conclusions
This paper presents the fractionalorder terminal slidingmode control (FTSMC) which has a new fractionalorder surface and assures the finite time convergence of the output voltage error to the equilibrium point during the load changes. It introduces a novel tuning parameter, the order , which allows the adjustment of the system output accordingly. Through mathematical analysis, we obtain the finite time of fractionalorder terminal slidingmode control. It is shown that when the order of FTSMC is one, the finite time taken to attain to the equilibrium point of the FTSMC system is the same as the one of the TSMC system. In other words, it means that TMSC is a special case of FTMSC. In addition, simulation results for a Buck converter are given to show the good performance of the FTSMC in comparison with the use of the traditional TSMC and SMC. The novel fractional terminal slidingmode control exhibits considerable improvement in terms of a faster output voltage response during load changes.
Abbreviations
Specifications of Buck Converter:  Input voltage (10 V) 
:  Capacitance (1000 μF) 
:  Inductance (1 mH) 
:  Minimum load resistance (2 Ω) 
:  Maximum load resistance (8 Ω) 
:  Desired output voltage (5 V). 
Competing Interests
The authors declare that they have no competing interests.
Acknowledgments
This work was supported by the National Natural Science Foundation of China (Grant nos. 51507134 and 51279161), Scientific Research Program Funded by Shaanxi Provincial Education Department (Program no. 15JK1537), and Doctoral Scientific Research Foundation of Xi’an Polytechnic University (Grant no. BS15025).
References
 K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, NY, USA, 1974. View at: MathSciNet
 B. B. Xu, D. Y. Chen, H. Zhang, and F. Wang, “The modeling of the fractionalorder shafting system for a water jet mixedflow pump during the startup process,” Communications in Nonlinear Science and Numerical Simulation, vol. 29, no. 1–3, pp. 12–24, 2015. View at: Publisher Site  Google Scholar
 N.N. Yang, C.X. Liu, and C.J. Wu, “Modeling and dynamics analysis of the fractionalorder Buck—boost converter in continuous conduction mode,” Chinese Physics B, vol. 21, no. 8, 2012. View at: Publisher Site  Google Scholar
 N. N. Yang, C. J. Wu, R. Jia, and C. Liu, “Modeling and characteristics analysis for a buckboost converter in pseudocontinuous conduction mode based on fractional calculus,” Mathematical Problems in Engineering, vol. 2016, Article ID 6835910, 11 pages, 2016. View at: Publisher Site  Google Scholar
 C. Wu, G. Si, Y. Zhang, and N. Yang, “The fractionalorder statespace averaging modeling of the Buck–Boost DC/DC converter in discontinuous conduction mode and the performance analysis,” Nonlinear Dynamics, vol. 79, no. 1, pp. 689–703, 2015. View at: Publisher Site  Google Scholar
 N.N. Yang, C.X. Liu, and C.J. Wu, “A hyperchaotic system stabilization via inverse optimal control and experimental research,” Chinese Physics B, vol. 19, no. 10, Article ID 100502, 2010. View at: Publisher Site  Google Scholar
 I. Podlubny, Fractional Differential Equations, vol. 198, Academic Press, New York, NY, USA, 1999. View at: MathSciNet
 D. Y. Chen, R. F. Zhang, X. Z. Liu, and X. Ma, “Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks,” Communications in Nonlinear Science and Numerical Simulation, vol. 19, no. 12, pp. 4105–4121, 2014. View at: Publisher Site  Google Scholar
 A. S. Hegazi, E. Ahmed, and A. E. Matouk, “On chaos control and synchronization of the commensurate fractional order Liu system,” Communications in Nonlinear Science and Numerical Simulation, vol. 18, no. 5, pp. 1193–1202, 2013. View at: Publisher Site  Google Scholar
 C.J. Wu, Y.B. Zhang, and N.N. Yang, “The synchronization of a fractional order hyperchaotic system based on passive control,” Chinese Physics B, vol. 20, no. 6, Article ID 060505, 2011. View at: Publisher Site  Google Scholar
 D. Y. Chen, R. F. Zhang, J. C. Sprott, and X. Ma, “Synchronization between integerorder chaotic systems and a class of fractionalorder chaotic system based on fuzzy sliding mode control,” Nonlinear Dynamics, vol. 70, no. 2, pp. 1549–1561, 2012. View at: Publisher Site  Google Scholar  MathSciNet
 A. Oustaloup, X. Moreau, and M. Nouillant, “The CRONE suspension,” Control Engineering Practice, vol. 4, no. 8, pp. 1101–1108, 1996. View at: Publisher Site  Google Scholar
 I. Podlubny, “Fractionalorder systems and PIλD$\mu $controllers,” IEEE Transactions on Automatic Control, vol. 44, no. 1, pp. 208–214, 1999. View at: Publisher Site  Google Scholar
 X. Wang, X. Zhang, and C. Ma, “Modified projective synchronization of fractionalorder chaotic systems via active sliding mode control,” Nonlinear Dynamics, vol. 69, no. 12, pp. 511–517, 2012. View at: Publisher Site  Google Scholar  MathSciNet
 N. N. Yang and C. X. Liu, “A novel fractionalorder hyperchaotic system stabilization via fractional slidingmode control,” Nonlinear Dynamics, vol. 74, no. 3, pp. 721–732, 2013. View at: Publisher Site  Google Scholar
 D. Y. Chen, R. F. Zhang, X. Y. Ma, and S. Liu, “Chaotic synchronization and antisynchronization for a novel class of multiple chaotic systems via a sliding mode control scheme,” Nonlinear Dynamics, vol. 69, no. 12, pp. 35–55, 2012. View at: Publisher Site  Google Scholar  MathSciNet
 C. Tricaud and Y. Q. Chen, “An approximate method for numerically solving fractional order optimal control problems of general form,” Computers and Mathematics with Applications, vol. 59, no. 5, pp. 1644–1655, 2010. View at: Publisher Site  Google Scholar
 S. Ladaci and A. Charef, “On fractional adaptive control,” Nonlinear Dynamics, vol. 43, no. 4, pp. 365–378, 2006. View at: Publisher Site  Google Scholar  MathSciNet
 C. J. Wu, G. Q. Si, Y. B. Zhang, and N. Yang, “Adaptive inverse optimal control of a novel fractionalorder fourwing hyperchaotic system with uncertain parameter and circuitry implementation,” Mathematical Problems in Engineering, vol. 2015, Article ID 741307, 15 pages, 2015. View at: Publisher Site  Google Scholar
 S.C. Tan, Y.M. Lai, and C. K. Tse, Sliding Mode Control of Switching Power Converters: Techniques and Implementation, CRC Press, Boca Raton, Fla, USA, 2011.
 M. J. Jafarian and J. Nazarzadeh, “Timeoptimal slidingmode control for multiquadrant buck converters,” IET Power Electronics, vol. 4, no. 1, pp. 143–150, 2011. View at: Publisher Site  Google Scholar
 R. Ramos, D. Biel, E. Fossas, and R. Griño, “Sliding mode controlled multiphase buck converter with interleaving and current equalization,” Control Engineering Practice, vol. 21, no. 5, pp. 737–746, 2013. View at: Publisher Site  Google Scholar
 K. K.S. Leung and H. S.H. Chung, “A comparative study of boundary control with first and secondorder switching surfaces for buck converters operating in DCM,” IEEE Transactions on Power Electronics, vol. 22, no. 4, pp. 1196–1209, 2007. View at: Publisher Site  Google Scholar
 B. M. Vinagre and A. J. Calderon, “On fractional sliding mode control,” in Proceedings of the 7th Portuguese Conference on Automatic Control, Lisbon, Portugal, September 2006. View at: Google Scholar
 H. Delavari, R. Ghaderi, A. Ranjbar, and S. Momani, “Fuzzy fractional order sliding mode controller for nonlinear systems,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 4, pp. 963–978, 2010. View at: Publisher Site  Google Scholar  Zentralblatt MATH  MathSciNet
 A. J. Calderón, B. M. Vinagre, and V. Feliu, “Fractional order control strategies for power electronic buck converters,” Signal Processing, vol. 86, no. 10, pp. 2803–2819, 2006. View at: Publisher Site  Google Scholar
 S. H. Hosseinnia, I. Tejado, B. M. Vinagre, and D. Sierociuk, “Booleanbased fractional order SMC for switching systems: application to a DCDC buck converter,” Signal, Image and Video Processing, vol. 6, no. 3, pp. 445–451, 2012. View at: Publisher Site  Google Scholar
Copyright
Copyright © 2016 Ningning Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.