Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2016 (2016), Article ID 7074206, 13 pages
http://dx.doi.org/10.1155/2016/7074206
Research Article

Pneumatic Adaptive Absorber: Mathematical Modelling with Experimental Verification

Institute of Fundamental Technological Research, Ulica Pawinskiego 5B, 02-106 Warszawa, Poland

Received 15 April 2015; Accepted 30 November 2015

Academic Editor: Zhongdong Duan

Copyright © 2016 Grzegorz Mikułowski and Rafał Wiszowaty. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Holnicki-Szulc, C. Graczykowski, G. Mikułowski, A. Mróz, and P. Pawłowski, “Smart technologies for adaptive impact absorption,” Solid State Phenomena, vol. 154, pp. 187–194, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Mikulowski and R. Leletty, “Advanced landing gears for improved impact absorption,” in Proceedings of 11th the International Conference on New Actuators (ACTUATOR '08), pp. 363–366, Bremen, Germany, June 2008.
  3. J. Lisiecki, T. Błazejewicz, S. Kłysz, G. Gmurczyk, P. Reymer, and G. Mikułowski, “Tests of polyurethane foams with negative Poisson's ratio,” Physica Status Solidi (B), vol. 250, no. 10, pp. 1988–1995, 2013. View at Publisher · View at Google Scholar · View at Scopus
  4. C. M. Harris and A. G. Piersol, Harris' Shock and Vibration Handbook, McGraw-Hill, New York, NY, USA, 5th edition, 2002.
  5. Stoßdämpfer GmbH, 2015, http://www.ace-ace.com/.
  6. G. Mikułowski and Ł. Jankowski, “Adaptive landing gear: optimum control strategy and potential for improvement,” Shock and Vibration, vol. 16, no. 2, pp. 175–194, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Makowski and L. Knap, “Reduction of wheel force variations with magnetorheological devices,” Journal of Vibration and Control, vol. 20, no. 10, pp. 1552–1564, 2013. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Skalski and R. Zalewski, “Viscoplastic properties of an MR fluid in a damper,” Journal of Theoretical and Applied Mechanics, vol. 52, no. 4, pp. 1061–1070, 2014. View at Publisher · View at Google Scholar
  9. A. Pregowska, R. Konowrocki, and T. Szolc, “On the semi-active control method for torsional vibrations in electro-mechanical systems by means of rotary actuators with a magneto-rheological fluid,” Journal of Theoretical and Applied Mechanics, vol. 51, no. 4, pp. 979–992, 2013. View at Google Scholar
  10. http://www.metrol.co.jp/.
  11. W. Koscielny and M. Jurczynski, “Pneumatyczne absorbery energii,” Pneumatyka, vol. 5, no. 60, pp. 24–26, 2006. View at Google Scholar
  12. R. Zalewski and T. Szmidt, “Application of special granular Structures for semi-active damping of lateral beam vibrations,” Engineering Structures, vol. 65, pp. 13–20, 2014. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Szmidt and R. Zalewski, “Inertially excited beam vibrations damped by vacuum packed particles,” Smart Materials and Structures, vol. 23, no. 10, Article ID 105026, 2014. View at Publisher · View at Google Scholar · View at Scopus
  14. J. M. Bajkowski, B. Dyniewicz, and C. I. Bajer, “Damping properties of a beam with vacuum-packed granular damper,” Journal of Sound and Vibration, vol. 341, pp. 74–85, 2015. View at Publisher · View at Google Scholar · View at Scopus
  15. N. S. Currey, Aircraft Landing Gear Design: Principles and Pratices, AIAA, 1988.
  16. K. Stoll and H. Halama, “Pneumatic shock absorber,” US Patent US5069317 A, 1991.
  17. A. Matsukashi, “Shock absorber,” US Patent US6547045 B2, 2003.
  18. Y. Antonovsky, “High frequency shock absorber and accelerator,” US Patent US6612410 B1, 2003.
  19. G. Mikułowski, R. Wiszowaty, and J. Holnicki-Szulc, “Characterization of a piezoelectric valve for an adaptive pneumatic shock absorber,” Smart Materials and Structures, vol. 22, no. 12, Article ID 125011, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. J.-H. Lee and K.-J. Kim, “Modelling of nonlinear complex stiffness of dual-chamber pneumatic spring for precision vibration isolations,” Journal of Sound and Vibration, vol. 301, no. 3–5, pp. 909–926, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. G. S. Aver'yanov, R. N. Khamitov, and A. V. Zubarev, “Dynamics of oscillatory systems with controllable shock absorbers,” Russian Engineering Research, vol. 28, no. 6, pp. 543–547, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. C. Graczykowski and J. Holnicki-Szulc, “Protecting offshore wind turbines against ship impacts by means of adaptive inflatable structures,” Shock and Vibration, vol. 16, no. 4, pp. 335–353, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. G. S. Aver'yanov, R. N. Khamitov, A. V. Zubarev, and A. A. Kozhushko, “Dynamics of controlled pneumatic shock-absorber systems for large objects,” Russian Engineering Research, vol. 28, no. 7, pp. 640–642, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Erin, B. Wilson, and J. Zapfe, “An improved model of a pneumatic vibration isolator: theory and experiment,” Journal of Sound and Vibration, vol. 218, no. 1, pp. 81–101, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. M.-C. Shih and S.-I. Tseng, “Identification and position control of a servo pneumatic cylinder,” Control Engineering Practice, vol. 3, no. 9, pp. 1285–1290, 1995. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Wang, J. Pu, and P. Moore, “A practical control strategy for servo-pneumatic actuator systems,” Control Engineering Practice, vol. 7, no. 12, pp. 1483–1488, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. S. C. Fok and E. K. Ong, “Position control and repeatability of a pneumatic rodless cylinder system for continuous positioning,” Robotics and Computer-Integrated Manufacturing, vol. 15, no. 5, pp. 365–371, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. I. Maciejewski, L. Meyer, and T. Krzyzynski, “Modelling and multi-criteria optimisation of passive seat suspension vibro-isolating properties,” Journal of Sound and Vibration, vol. 324, no. 3–5, pp. 520–538, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Sekuła, C. Graczykowski, and J. Holnicki-Szulc, “On-line impact load identification,” Shock and Vibration, vol. 20, no. 1, pp. 123–141, 2013. View at Publisher · View at Google Scholar
  30. G. Suwała and L. Jankowski, “A model-free method for identification of mass modifications,” Structural Control & Health Monitoring, vol. 19, no. 2, pp. 216–230, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. R. E. Sonntag and G. J. van Wylen, Fundamentals of Classical Thermodynamics, John Wiley & Sons, 1965.
  32. M. A. Boles and Y. A. Cengel, Thermodynamics, McGraw-Hill, 2nd edition, 1994.