Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2017, Article ID 7309637, 13 pages
https://doi.org/10.1155/2017/7309637
Research Article

Ballistic Coefficient Estimation for Reentry Prediction of Rocket Bodies in Eccentric Orbits Based on TLE Data

1Astronautics Research Group, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK
2Surrey Space Centre, University of Surrey, Guildford GU2 7XH, UK
3Department of Integrated System Engineering, Kyushu Institute of Technology, Kitakyushu, Japan

Correspondence should be addressed to David J. Gondelach; moc.liamg@hcalednogdivad

Received 30 June 2017; Accepted 14 November 2017; Published 10 December 2017

Academic Editor: Alessandro Gasparetto

Copyright © 2017 David J. Gondelach et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Pardini and L. Anselmo, “Re-entry predictions for uncontrolled satellites: results and challenges,” in Proceedings of the 6th IAASS Conference-Safety is Not an Option, Montreal, Canada, 2013.
  2. National Research Council, Continuing Kepler’s Quest: Assessing Air Force Space Command’s Astrodynamics Standards, National Academies Press, Washington, D.C., 2012.
  3. J. Woodburn and S. Lynch, “A Numerical Study of Orbit Lifetime,” in Proceedings of the AAS/AIAA Astrodynamics Specialists Conference, Lake Tahoe, CA, USA, 2005.
  4. B. Naasz, K. Berry, and K. Schatten, “Orbit decay prediction sensitivity to solar flux variations,” in Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, Mackinac Island, MI, USA, 2007.
  5. P. J. Cefola, R. J. Proulx, A. I. Nazarenko, and V. S. Yurasov, “Atmospheric density correction using two line element sets as the observation data,” Advances in the Astronautical Sciences, vol. 116, pp. 1953–1978, 2004. View at Google Scholar
  6. M. F. Storz, B. R. Bowman, J. I. Branson, S. J. Casali, and W. K. Tobiska, “High accuracy satellite drag model (HASDM),” Advances in Space Research, vol. 36, no. 12, pp. 2497–2505, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. V. S. Yurasov, A. I. Nazarenko, K. T. Alfriend, and P. J. Cefola, “Reentry time prediction using atmospheric density corrections,” in Proceedings of the 4th European Conference on Space Debris, pp. 325–330, Darmstadt, Germany, April 2005. View at Scopus
  8. G. Koppenwallner, B. Fritsche, T. Lips, and H. Klinkrad, “SCARAB - A Multi-Disciplinary Code for Destruction Analysis of Spacecraft during Re-Entry,” in Fifth European Symposium on Aerothermodynamics for Space Vehicles, vol. 563, p. 281, ESA Special Publication, 2005. View at Google Scholar
  9. J. Geul, E. Mooij, and R. Noomen, “GOCE statistical re-entry predictions,” in Proceedings of 7th European Conference on Space Debris, Darmstadt, Germany, ESA Communications, April 2017.
  10. D. P. Drob, J. T. Emmert, G. Crowley et al., “An empirical model of the Earth's horizontal wind fields: HWM07,” Journal of Geophysical Research: Space Physics, vol. 113, no. 12, Article ID A12304, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. F. R. Hoots and R. L. Roehrich, “Models for Propagation of NORAD Element Sets,” Defense Technical Information Center, 1980. View at Publisher · View at Google Scholar
  12. D. Vallado, P. Crawford, R. Hujsak, and T. Kelso, “Revisiting Spacetrack Report #3,” in Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Keystone, Colorado, USA, 2006. View at Publisher · View at Google Scholar
  13. T. Flohrer, H. Krag, H. Klinkrad, B. B. Virgili, and C. Früh, “Improving ESA's collision risk estimates by an assessment of the TLE orbit errors of the US SSN catalogue,” in Proceedings of the 5th European Conference on Space Debris, Darmstadt, Germany, April 2009. View at Scopus
  14. D. A. Vallado, B. Bastida Virgili, and T. Flohrer, “Improved SSA through orbit determination of two-line element sets,” in Proceedings of the in 6th European Conference on Space Debris, ESA Communications, Darmstadt, Germany, April 2013.
  15. M. D. Hejduk, S. J. Casali, D. A. Cappellucci, N. L. Ericson, and D. E. Snow, “A catalogue-wide implementation of general perturbations orbit determination extrapolated from higher order orbital theory solutions,” in Proceedings of the 23rd AAS/AIAA Space Flight Mechanics Meeting, Kauai, HI, USA, 2013.
  16. R. K. Sharma, P. Bandyopadhyay, and V. Adimurthy, “Lifetime estimation of upper stages re-entering from GTO by genetic algorithm with response surface approximation,” in Proceedings of the International Astronautical Congress, 2006.
  17. A. Saunders, G. G. Swinerd, and H. G. Lewis, “Deriving accurate satellite ballistic coefficients from two-line element data,” Journal of Spacecraft and Rockets, vol. 49, no. 1, pp. 175–184, 2012. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Sang, J. C. Bennett, and C. H. Smith, “Estimation of ballistic coefficients of low altitude debris objects from historical two line elements,” Advances in Space Research, vol. 52, no. 1, pp. 117–124, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. J. C. Dolado-Perez, L. Aivar Garcia, A. Agueda Mate, and I. Llamas de la Sierra, “OPERA: A tool for lifetime prediction based on orbit determination from TLE data,” in Proceedings of the 24th International Symposium on Space Flight Dynamics, Laurel, Maryland, USA, 2014.
  20. S. Gupta and A. K. Anilkumar, “Integrated model for prediction of reentry time of risk objects,” Journal of Spacecraft and Rockets, vol. 52, no. 1, pp. 295–299, 2015. View at Publisher · View at Google Scholar · View at Scopus
  21. R. K. Sharma and M. Mutyalarao, “Optimal reentry time estimation of an upper stage from geostationary transfer orbit,” Journal of Spacecraft and Rockets, vol. 47, no. 4, pp. 686–690, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Mutyalarao and R. K. Sharma, “On prediction of re-entry time of an upper stage from GTO,” Advances in Space Research, vol. 47, no. 11, pp. 1877–1884, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. J. F. Jeyakodi David and R. K. Sharma, “Lifetime Estimation of the Upper Stage of GSAT-14 in Geostationary Transfer Orbit,” International Scholarly Research Notices, vol. 2014, pp. 1–8, 2014. View at Publisher · View at Google Scholar
  24. R. Russell, N. Arora, V. Vittaldev, D. Gaylor, and J. Anderson, “Ballistic coefficient prediction for resident space objects,” in Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, vol. 1, p. 88, 2012.
  25. K. Moe and M. M. Moe, “Gas-surface interactions and satellite drag coefficients,” Planetary and Space Science, vol. 53, no. 8, pp. 793–801, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Levit and W. Marshall, “Improved orbit predictions using two-line elements,” Advances in Space Research, vol. 47, no. 7, pp. 1107–1115, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. A. A. Lidtke, D. J. Gondelach, R. Armellin et al., “Processing two line element sets to facilitate re-entry prediction of spent rocket bodies from the geostationary transfer orbit,” in Proceedings of the 6th International Conference on Astrodynamics Tools and Techniques, Darmstadt, Germany, 2016.
  28. A. Morselli, R. Armellin, P. Di Lizia, and F. Bernelli Zazzera, “A high order method for orbital conjunctions analysis: Sensitivity to initial uncertainties,” Advances in Space Research, vol. 53, no. 3, pp. 490–508, 2014. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Doornbos and B. Fritsche, “Evaluation of satellite aerodynamic and radiation pressure acceleration models using accelerometer data,” in Proceedings of the 6th International Conference on Astrodynamics Tools and Techniques, Darmstadt, Germany, 2016.
  30. J. M. Picone, J. T. Emmert, and J. L. Lean, “Thermospheric densities derived from spacecraft orbits: Accurate processing of two-line element sets,” Journal of Geophysical Research: Space Physics, vol. 110, no. 3, Article ID A03301, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. D. A. Vallado and W. D. McClain, Fundamentals of Astrodynamics and Applications, Microcosm Press, Hawthorn, CA, USA, 4th edition, 2013. View at MathSciNet
  32. O. Montenbruck and E. Gill, Satellite Orbits: Models, Methods and Applications, Springer, Berlin, Germany, 2000. View at Publisher · View at Google Scholar
  33. M. J. H. Walker, B. Ireland, and J. Owens, “A set modified equinoctial orbit elements,” Celestial Mechanics, vol. 36, no. 4, pp. 409–419, 1985. View at Publisher · View at Google Scholar · View at Scopus
  34. D. J. Gondelach, A. Lidtke, R. Armellin et al., “Re-entry Prediction of Spent Rocket Bodies in GTO,” in Proceedings of the 26th AAS/AIAA Space Flight Mechanics Meeting, Napa, CA, USA, 2016.
  35. A. Dvoretzky, J. Kiefer, and J. Wolfowitz, “Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator,” Annals of Mathematical Statistics, vol. 27, pp. 642–669, 1956. View at Publisher · View at Google Scholar · View at MathSciNet
  36. T. Flohrer, H. Krag, and H. Klinkrad, “Assessment and categorization of TLE orbit errors for the US SSN catalogue,” in Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, Wailea, HI, USA, 2008.