Table of Contents Author Guidelines Submit a Manuscript
Mathematical Problems in Engineering
Volume 2017 (2017), Article ID 7964545, 11 pages
https://doi.org/10.1155/2017/7964545
Research Article

A Study on the Optimization of Chain Supermarkets’ Distribution Route Based on the Quantum-Inspired Evolutionary Algorithm

1School of Intelligent Manufacturing, Sichuan University of Arts and Science, No. 400, Nanba Road, Dachuan, Dazhou, Sichuan, China
2School of Computer Science, Beijing University of Posts and Telecommunications, No. 10, Xitucheng Road, Haidian, Beijing, China
3School of Computer Science and Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Road, Gaoxin, Chengdu, Sichuan, China

Correspondence should be addressed to Bi Liang

Received 22 June 2017; Accepted 7 November 2017; Published 28 November 2017

Academic Editor: Thomas Hanne

Copyright © 2017 Bi Liang and Fengmao Lv. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The chain supermarket has become a major part of China’s retail industry, and the optimization of chain supermarkets’ distribution route is an important issue that needs to be considered for the distribution center, because for a chain supermarket it affects the logistics cost and the competition in the market directly. In this paper, analyzing the current distribution situation of chain supermarkets both at home and abroad and studying the quantum-inspired evolutionary algorithm (QEA), we set up the mathematical model of chain supermarkets’ distribution route and solve the optimized distribution route throughout QEA. At last, we take Hongqi Chain Supermarket in Chengdu as an example to perform the experiment and compare QEA with the genetic algorithm (GA) in the fields of the convergence, the optimal solution, the search ability, and so on. The experiment results show that the distribution route optimized by QEA behaves better than that by GA, and QEA has stronger global search ability for both a small-scale chain supermarket and a large-scale chain supermarket. Moreover, the success rate of QEA in searching routes is higher than that of GA.