Research Article

# Solving Elliptical Equations in 3D by Means of an Adaptive Refinement in Generalized Finite Differences

## Table 2

Example  1.
 Node 1 .00001 .00001 .00001 2 .2600 .0001 .0001 3 .5100 .0001 .0001 4 .7600 .0001 .0001 5 0.900 .0001 .0001 6 .0100 .2600 .0001 7 .2600 .2600 .0001 8 .5100 .2600 .0001 9 .7600 .2600 .0001 10 1.0100 .2600 .0001 11 .0100 .5100 .0001 12 .2600 .5100 .0001 13 .5100 .5100 .0001 14 .7600 .5100 .0001 15 1.2000 .5100 .0001 16 .0100 .7600 .0001 17 .2600 .7600 .0001 18 .5100 .7600 .0001 19 .7600 .7600 .0001 20 1.0100 .7600 .0001 21 .0100 0.9000 .0001 22 .2600 1.0100 .0001 23 .5100 1.2000 .0001 24 .7600 1.0100 .0001 25 .9000 .9000 .0001 26 .0100 .0001 .2600 27 .2600 .0001 .2600 28 .5100 .0001 .2600 29 .7600 .0001 .2600 30 0.9000 .0001 .2600 31 .0100 .2600 .2600 32 .2600 .2600 .2600 33 .5100 .2600 .2600 34 .7600 .2600 .2600 35 1.0100 .2600 .2600 36 .0100 .5100 .2600 37 .2600 .5100 .2600 38 .5100 .5100 .2600 39 .7600 .5100 .2600 40 1.2000 .5100 .2600 41 .0100 .7600 .2600 42 .2600 .7600 .2600 43 .5100 .7600 .2600 44 .7600 .7600 .2600 45 1.0100 .7600 .2600 46 .0100 0.9000 .2600 47 .2600 1.0100 .2600 48 .5100 1.2000 .2600 49 .7600 1.0100 .2600 50 0.9000 0.9000 2600 51 .0100 .0001 .5100 52 .2600 .0001 .5100 53 .5100 .0001 .5100 54 .7600 .0001 .5100 55 0.9000 .0100 .5100 56 .0100 .2600 .5100 57 .2600 .2600 .5100 58 .5100 .2600 .5100 59 .7600 .2600 .5100 60 1.0100 .2600 .5100 61 .0100 .5100 .5100 62 .2600 .5100 .5100 63 .5100 .5100 .5100 64 .7600 .5100 .5100 65 1.2000 .5100 .5100 66 .0100 .7600 .5100 67 .2600 .7600 .5100 68 .5100 .7600 .5100 69 .7600 .7600 .5100 70 1.0100 .7600 .5100 71 .0100 0.9000 .5100 72 .2600 1.0100 .5100 73 .5100 1.2000 .5100 74 .7600 1.0100 .5100 75 0.9000 0.9000 .5100 76 .0100 .0001 .7600 77 .2600 .0001 .7600 78 .5100 .0001 .7600 79 .7600 .0001 .7600 80 0.9000 .0100 .7600 81 .0100 .2600 .7600 82 .2600 .2600 .7600 83 .5100 .2600 .7600 84 .7600 .2600 .7600 85 1.0100 .2600 .7600 86 .0100 .5100 .7600 87 .2600 .5100 .7600 88 .5100 .5100 .7600 89 .7600 .5100 .7600 90 1.2000 .5100 .7600 91 .0100 .7600 .7600 92 .2600 .7600 .7600 93 .5100 .7600 .7600 94 .7600 .7600 .7600 95 1.0100 .7600 .7600 96 .0100 0.9000 .7600 97 .2600 1.0100 .7600 98 .5100 1.2000 .7600 99 .7600 1.0100 .7600 100 0.9000 0.9000 .7600 101 .0100 .0001 1.0100 102 .2600 .0001 1.0100 103 .5100 .0001 1.0100 104 .7600 .0001 1.0100 105 0.9000 .0001 1.0100 106 .0100 .2600 1.0100 107 .2600 .2600 1.0100 108 .5100 .2600 1.0100 109 .7600 .2600 1.0100 110 1.0100 .2600 1.0100 111 .0100 .5100 1.0100 112 .2600 .5100 1.0100 113 .5100 .5100 1.0100 114 .7600 .5100 1.0100 115 1.2000 .5100 1.0100 116 .0100 .7600 1.0100 117 .2600 .7600 1.0100 118 .5100 .7600 1.0100 119 .7600 .7600 1.0100 120 1.0100 .7600 1.0100 121 .0100 0.9000 1.0100 122 .2600 1.0100 1.0100 123 .5100 1.2000 1.0100 124 .7600 1.0100 1.0100 125 0.9000 0.9000 1.0100