Research Article

FPGA Realization and Lyapunov–Krasovskii Analysis for a Master-Slave Synchronization Scheme Involving Chaotic Systems and Time-Delay Neural Networks

Table 4

Some FPGA-based implementations of chaotic systems over the last decade.

Reference and yearBrief descriptionNumerical representationIntegration methodDevice

[44], 20093D Chen chaotic systemIEEE-754 FLP 32 bitsRK4Xilinx Virtex-II XCV1000FG456-4
[45], 2011A new hyperchaotic 4D systemRK4Xilinx Virtex-II Pro XC2VP30
[47], 2013Switching 3D chaotic systemsFXP 32 bits 16I16QEulerXilinx Virtex-II FPGA 2VP30FFG896-7
[46], 2015A 3D chaotic systemIEEE-754 FLP 32 bitsRK4Xilinx Virtex-6 XC6VLX550T-2FF1759
[48], 2017Fractional-order chaotic systemFXP 32 bitsTustinAltera Cyclone IV EP4CE11529C7N
[38], 2018Fractional-order complex networks with chaotic nodesFXP 24 bits 4I20QGrünwald–LetnikovXilinx Zynq-7000 XC7Z020
[49], 2019Fractional-order chaotic systemFXP 32 bitsGrünwald–LetnikovAltera Cyclone IV GX FPGA DE2I-150
[50], 2019The Lü–Chen 2002 chaotic systemFXP 32 bits 16I16QHeunXilinx Virtex-6 XC6VLX75T-3FF484
[51], 2019A new 3D chaotic systemFXP 32 bits 7I25QEuler and RK4Xilinx Virtex-6 XC6VLX75T-3FF484
[52], 2019OFDM system using chaosFXP 128 bitsEuler
ProposedA tracking scheme (master and slave)FXP 30 bits 7I23QEulerXilinx Zynq-7000 XC7Z020