Research Article

A Comparative State-of-the-Art Constrained Metaheuristics Framework for TRUSS Optimisation on Shape and Sizing

Table 1

The configuration details of optimisation methods applied the truss shape and sizing problem. Npop is the initial population size.

%------------------------------
\begin{table}(H)
\Centering
\Caption{ The configuration details of optimisation methods applied the truss shape and sizing problem. $N_{pop}$ is the initial population size.}
\label{table:meta-details}
\scalebox{0.9}{
\begin{tabular}{|l|l|l|p{6cm}|}
\hline
& \textbf{Name} & \textbf{$N_{pop}$} & \textbf{Predefined Settings} \\ \hline
1 & Grey Wolf Optimizer (GWO)∼\cite{mirjalili2014grey} & 50 & $\alpha$ decreases linearly from 2 to 0 \\\hline
2 & Moth Flame Optimizer (MFO)∼\cite{mirjalili2015moth} & 50 & $\alpha$ linearly dicreases from -1 to -2 \\\hline
3 & Multi Verse Optimizer (MVO)∼\cite{mirjalili2016multi} & 50 & minimum and maximum of Wormhole existence probability: WEP$_{Max} = 1$,∼ WEP$_{Min} = 0.2$, $\rho = 6$. \\\hline
4 & Dragonfly Algorithm (DA)∼\cite{mirjalili2016dragonfly} & 50 &$w = 0.9–0.2$, $s = 0.1$, $a = 0.1$, $c = 0.7$, $f = 1$, $e = 1$. \\\hline
% 5 & Sine Cosine Algorithm (SCA)∼\cite{mirjalili2016sca} & 50 & $\alpha = 2$; $r_1 = \alpha$ decreases linearly from $\alpha$ to 0 \\\hline
5 & Henry Gas Solubility optimisation (HGSO)∼\cite{hashim2019henry}& 50& $N_g = 5$, $l_1 = 0.05$, $l_2 = 100$, $l_3 = 0.01$, $\alpha = 1$, $\beta = 1$, $c_1 = 0.1$, $c_2 = 0.2$ \\\hline
6 & Equilibrium Optimizer (EO)∼\cite{faramarzi2020equilibrium} & 50 & $\omega_1 = 1,∼\omega_2 = 2$, $GP = 0.5$(=generation probability), $V = 1$. \\\hline
7 & Arithmetic optimisation Algorithm (AOA)∼\cite{abualigah2021arithmetic} & 50 & $MOP_{Max} = 1$,
$MOP_{Min} = 0.2$, $C_{iter} = 1$, $\alpha = 5$, $\mu = 0.499$ \\\hline
8 & Generalized Normal Distribution (GNDO)∼\cite{zhang2020generalized} & 50 & applied the default settings. \\\hline
9 & Salp Swarm Algorithm (SSA)∼\cite{mirjalili2017salp} & 50& $c_1$ decreased from 2 to zero. $c_2 = rand$ and $c_3 = rand$ \\\hline
10 &Marine Predators Algorithm (MPA)∼\cite{faramarzi2020marine} & 50& $p = 0.5$, $FAD = 0.2$ \\\hline
11 &Neural Network Algorithm (NNA)∼\cite{sadollah2018dynamic} & 50& pre-defined settings \\\hline
12 &Water Cycle Algorithm (WCA)∼\cite{eskandar2012water} & 50& $N_{sr} = 4$, $D_{max} = 10^{-5}$ \\\hline
\end{tabular}
}
\end{table}
%--------------------